
See also
FontName Property Array
FontBold Property Array
FontItalic Property Array
FontSize Property Array
FontStrikethru Property Array
FontUnderline Property Array
Message Property Array

See also
AdjustFieldHeight Property
FontName Property Array
FontSize Property Array
Message Property Array

See also
AdjustFieldHeight Property
FontBold Property Array
FontItalic Property Array
FontSize Property Array
FontStrikethru Property Array
FontUnderline Property Array
Message Property Array

See also
AdjustFieldHeight Property
FontBold Property Array
FontItalic Property Array
FontName Property Array
FontStrikethru Property Array
FontUnderline Property Array
Message Property Array

See also
AutoToggle Property
FieldType Property Array
FieldWidth Property Array
KeyOffText, KeyOnText Properties
Message Property Array
Toggle Event

See also
AutoToggle Property
FieldType Property Array
FieldWidth Property Array
KeyOffText, KeyOnText Properties
Message Property Array
Numlock, ScrollLock, Capslock Properties

See also
FieldType Property Array
FieldWidth Property Array
KeyOffText, KeyOnText Properties
Message Property Array
Numlock, ScrollLock, Capslock Properties
Toggle Event

See also
FieldWidth Property Array
Message Property Array

See also
FieldWidth Property Array

See also
FieldType Property Array
FieldWidth Property Array

See also
BackColor Property Array
FieldWidth Property Array
FloodColor Property
FloodField Property
FloodPercent Property
FloodShowPct Property
ForeColor Property Array
Message Property Array

See also
BackColor Property Array
FieldWidth Property Array
FloodColor Property
FloodField Property
FloodInvertText Property
FloodPercent Property
ForeColor Property Array
Message Property Array

See also
BackColor Property Array
FieldWidth Property Array
FloodColor Property
FloodField Property
FloodInvertText Property
FloodShowPct Property
ForeColor Property Array
Message Property Array

See also
BackColor Property Array
FloodColor Property
FloodInvertText Property
FloodPercent Property
FloodShowPct Property
ForeColor Property Array
Message Property Array

See also
BackColor Property Array
FloodField Property
FloodInvertText Property
FloodPercent Property
FloodShowPct Property
ForeColor Property Array
Message Property Array

See also
FieldWidth Property Array

See also
Alignment Property Array
BackColor Property Array
ForeColor Property Array
Message Property Array

See also
Alignment Property Array
BackColor Property Array
FieldWidth Property Array
ForeColor Property Array

See also
FieldWidth Property Array
Message Property Array
SysMenuBrowse Event
Tag Property

See also
FieldWidth Property Array
Message Property Array
MenuTagsField Property
Tag Property

See also
BackColor Property Array
FieldWidth Property Array
RedrawField Property
Message Property Array

See also
FieldWidth Property Array
ForeColor Property Array
RedrawField Property
Message Property Array

See also
FieldOutline Property Array
FieldType Property Array
SpaceAfter Property Array

See also
FieldType Property Array
FieldWidth Property Array
Message Property Array

See also
FieldType Property Array
FieldWidth Property Array
Message Property Array

See also
AutoToggle Property
FieldOutline Property Array
FieldWidth Property Array
KeyOffText, KeyOnText Properties
Message Property Array
Toggle Event

See also
FieldOutline Property Array
FieldWidth Property Array

See also
AutoToggle Property
FieldType Property Array
Numlock, ScrollLock, Capslock Properties
Toggle Event

' Toggle Example, StatusBar Control

Const FIELD_NORMAL = 0
Const FIELD_CAPSLOCK = 1
Const FIELD_NUMLOCK = 2
Const FIELD_SCROLLOCK = 3
Const FIELD_DATETIME = 4

Sub Form_Load ()

Const ALIGN_LEFT = 0
Const ALIGN_RIGHT = 1
Const ALIGN_CENTER = 2

Const OFF = 0
Const ON = 1

' Align the statusbar to the bottom of the window
' and set the height
StatusBar1.Align = 2
StatusBar1.Height = 330

' Set messages for the toggle-keys
StatusBar1.CapsLockOnText = "CAPS"
StatusBar1.CapsLockOffText = "caps"
StatusBar1.NumLockOnText = "NUM"
StatusBar1.NumLockOffText = "num"
StatusBar1.ScrollLockOnText = "SCROLL"
StatusBar1.ScrollLockOffText = "scroll"

' The statusbar initializes three fields by setting their
' FieldWidth property to a value greater than zero.
StatusBar1.FieldWidth(0) = 400
StatusBar1.FieldWidth(1) = 40
StatusBar1.FieldWidth(2) = 40
StatusBar1.FieldWidth(3) = 40

' The spacing between the fields is set
StatusBar1.SpaceAfter(0) = 4
StatusBar1.SpaceAfter(1) = 2
StatusBar1.SpaceAfter(2) = 2
' SpaceAfter(3) isn't set since this is the last field
' and it's SpaceAfter property isn't used.

StatusBar1.FieldType(0) = FIELD_NORMAL ' Plain text (DEFAULT)
StatusBar1.FieldType(1) = FIELD_NUMLOCK ' Num-lock key status
StatusBar1.FieldType(2) = FIELD_CAPSLOCK ' Caps-lock key status
StatusBar1.FieldType(3) = FIELD_SCROLLOCK ' Scroll-lock key status

' Allow the user to double-click a toggle-field to toggle the key
StatusBar1.AutoToggle = True

' Turn num-lock on and turn caps- and scroll-lock off.
StatusBar1.NumLock = ON
StatusBar1.CapsLock = OFF
StatusBar1.ScrollLock = OFF

' The alignment for the last three fields is set to ALIGN_CENTER
StatusBar1.Alignment(1) = ALIGN_CENTER ' Center
StatusBar1.Alignment(2) = ALIGN_CENTER ' Center
StatusBar1.Alignment(3) = ALIGN_CENTER ' Center

' Set a message for the first field (the other three
' messages are ignored anyhow
StatusBar1.Message(0) = "Demonstration of the StatusBar control"

End Sub

Sub StatusBar1_Toggle(FieldType As Integer, KeyState As Integer)
Dim sMsg As String

Select Case FieldType
Case FIELD_NUMLOCK: sMsg = "Numlock"
Case FIELD_CAPSLOCK: sMsg = "Capslock"
Case FIELD_SCROLLOCK: sMsg = "Scroll-lock"

End Select
sMsg = sMsg + " is turned "
If KeyState Then sMsg = sMsg + "on." Else sMsg = sMsg + "off."
MsgBox sMsg

End Sub

' Progress Indicator Example, StatusBar Control

Sub Form_Load ()

' Only display one field of the statusbar control
StatusBar1.FieldWidth(0)=100
' Set the field to automatically expand
StatusBar1.ExpandField = 0
' Set the field to show a percentage
StatusBar1.FloodField = 0
' Set the field to invert the text not under the filled area
StatusBar1.FloodInvertText = True
' Don't display the percentage
StatusBar1.FloodShowPct = False

' Set a message for the percentage field
StatusBar1.Message(0) = "Busy creating database..."
StatusBar1.Align = 2
StatusBar1.Height = 400

End Sub

Sub Form_Click ()
StatusBar1.FloodPercent = StatusBar1.FloodPercent + 5

End Sub

' Click Example, StatusBar Control

Sub Form_Load ()
Dim I As Integer

WindowState = 2
StatusBar1.Align = 2
StatusBar1.Height = 400

For I = 0 To 7
StatusBar1.FieldWidth(I) = 50
StatusBar1.Message(I) = "Field " & Format$(I)

Next I

StatusBar1.FieldWidth(8) = 200
StatusBar1.Message(8) = "Click on any field"

End Sub

Sub StatusBar1_Click(Field As Integer)
Dim sMsg As String

If Field<>8 Then
sMsg = "Clicked on field " & Format$(Field)
StatusBar1.ForeColor(8) = QBColor(0)

Else
sMsg = "Hey, you clicked on me!"
StatusBar1.ForeColor(8) = RGB(0,0,255)

End If
StatusBar1.Message(8) = sMsg

End Sub

' StatusBar Initialize Example, StatusBar Control

Sub Form_Load ()

Const FIELD_NORMAL = 0
Const FIELD_CAPSLOCK = 1
Const FIELD_NUMLOCK = 2
Const FIELD_SCROLLOCK = 3
Const FIELD_DATETIME = 4

Const ALIGN_LEFT = 0
Const ALIGN_RIGHT = 1
Const ALIGN_CENTER = 2

Const RAISED = 1
Const HEAVY_RAISED = 2
Const INSET = 3
Const HEAVY_INSET = 4

Const OUTLINE_NONE = 0
Const OUTLINE_RAISED = 1
Const OUTLINE_INSET = 2

' Align the statusbar to the bottom of the window
' and set the height
StatusBar1.Align = 2
StatusBar1.Height = 330

' Make the statusbar display a slightly inset font
StatusBar1.Font3D = INSET

' The statusbar initializes three fields by setting their
' FieldWidth property to a value greater than zero.

 StatusBar1.FieldWidth(0) = 400
 StatusBar1.FieldWidth(1) = 33
 StatusBar1.FieldWidth(2) = 70

' The first field is set to AutoExpand
' Since field 0 is the expand field, the specified width
' will be treated as the minimum width for this field"
StatusBar1.ExpandField = 0

' All fields get a different outline
StatusBar1.FieldOutline(0) = FIELD_NONE ' no outline
StatusBar1.FieldOutline(1) = FIELD_RAISED ' raised outline
StatusBar1.FieldOutline(2) = FIELD_INSET ' inset outline

' All fields receive their own Forecolor
StatusBar1.ForeColor(0) = QBColor(12) ' Red
StatusBar1.ForeColor(1) = QBColor(0) ' Black
StatusBar1.ForeColor(2) = RGB(0,0,255) ' Bright Blue

' Field 0 gets a different backcolor
StatusBar1.BackColor(0) = QBColor(1) ' Dark Blue

' The spacing between the fields is set
StatusBar1.SpaceAfter(0) = 4
StatusBar1.SpaceAfter(1) = 2
' SpaceAfter(2) isn't set since this is the last field
' and it's SpaceAfter property isn't used.

StatusBar1.FieldType(0) = FIELD_NORMAL ' Plain text (DEFAULT)
StatusBar1.FieldType(1) = FIELD_NUMLOCK ' Num-lock key status
StatusBar1.FieldType(2) = FIELD_DATETIME ' Date-time
StatusBar1.DateTimeFormat(2) = "General Date"

StatusBar1.FieldOutline(0) = OUTLINE_NONE ' No outline for field 0
StatusBar1.FieldOutline(1) = OUTLINE_RAISED ' Raised outline
StatusBar1.FieldOutline(2) = OUTLINE_INSET ' Inset outline

' The alignment for the last two field is set to ALIGN_CENTER
StatusBar1.Alignment(1) = ALIGN_CENTER ' Center
StatusBar1.Alignment(2) = ALIGN_CENTER ' Center

' Set a message for the first field (the other two
' messages are ignored anyhow
StatusBar1.Message(0) = "Demonstration of the StatusBar control"

End Sub

Toggle Event, StatusBar Control
see also example

Description
Occurs when the user presses one of the Caps-lock, Num-lock or Scroll-lock keys on the
keyboard or double-click a field width FieldType 1, 2 or 3 and the AutoToggle property has
been set to True.

Syntax
Sub StatusBar1_Toggle (Index As Integer, FieldType As Integer, KeyState As Integer)

Remarks
The argument Index uniquely identifies a control if it is in a control array.    The FieldType
argument specifies the special key that was toggled. It has one of the following three
values:

Value Short name Description
1 FIELD_CAPSLOCK Caps-lock has been toggled
2 FIELD_NUMLOCK Num-lock has been toggled
3 FIELD_SCROLLOCK Scroll-lock has been toggled
The KeyState argument is a boolean argument and specifies whether the toggled key
was toggled on or off.
The example shows you a possible way to react to the Toggle event. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

SysMenuBrowse Event, StatusBar Control
see also

Description
Occurs when the user selects an item from the system-menu on the form the StatusBar
is on.

Syntax
Sub StatusBar1_SysMenuBrowse (MenuID As Integer, Message As String)

Remarks
This event allows you to specify a message whenever a user browses through the items
in the system menu. It only occurs if the MenuTagsField property of the StatusBar control
is set to something other than -1.
You can specify a message to be displayed, according to the menuID parameter, by
modifying the Message parameter. The menuID parameter specifies the id of the
currently selected menu-item of the system-menu. It is one of the following:

MenuID Menu-item
> 0 System menu box
- 4096 Size
- 4080 Move
- 4064 Minimize
- 4048 Maximize
- 4032 Next window
- 4000 Close
- 3808 Restore
- 3792 Switch to ..

If the text in the Message parameter is not empty, it is displayed in the field specified by
the MenuTagsField property.

DblClick Event, StatusBar Control
see also

Description
Occurs when the user quickly presses and then releases the left-mouse button over a
field of the StatusBar control twice. You can not trigger the DblClick event for the
StatusBar control in code.

Syntax
Sub StatusBar1_DblClick (Index As Integer, Field As Integer)

Remarks
The argument Index uniquely identifies a control if it is in a control array.    The Field
argument specifies the number of the text-field that was doubleclicked on. You can use
this number to take some action whenever the user doubleclicks on a field.

Click Event, StatusBar Control
see also example

Description
Occurs when the user presses and then releases the left-mouse button over a field of the
StatusBar control. You can not trigger the Click event for the StatusBar control in code.

Syntax
Sub StatusBar1_Click (Index As Integer, Field As Integer)

Remarks
The argument Index uniquely identifies a control if it is in a control array.    The Field
argument specifies the number of the text-field that was clicked on. You can use this
number to take some action whenever the user clicks on a field.
The example shows you a possible way to react to the Click event. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

FontSize Property Array, StatusBar Control
see also

Description
Determines the size of the font to be used for a text-field of the StatusBar control.

Usage
[form!]StatusBar1.FontSize(I) [= setting]

Remarks
Use this font property to specify the size of the text displayed in the text-field of
StatusBar control.

Note
Fonts available in Visual Basic vary according to your system configuration, display
devices, and printing devices.    Font-related properties can be set only to values for
which actual fonts exist.In general, you should change the FontName property before you
set size and style attributes with the FontSize, FontBold, FontItalic, FontStrikethru, and
FontUnderline properties.   
However, when you set TrueType fonts to smaller than 8 points, you should set the point
size with the FontSize property, then set the FontName property, and then set the size
again with the FontSize property.    The Windows environment uses a different font for
TrueType fonts that are smaller than 8 points.
The index in the FontSize property array is the same index as in the FieldWidth and
Message arrays.

Data Type
Single

FontBold, FontItalic, FontStrikethru and FontUnderline Property
Arrays, StatusBar Control
see also

Description
Determine font styles for the text in the text-field in the following formats:    FontBold,
FontItalic, FontStrikethru, and FontUnderline.

Usage
[form!]StatusBar1.FontBold(I) [= setting%]
[form!]StatusBar1.FontItalic(I) [= setting%]
[form!]StatusBar1.FontStrikethru(I) [= setting%]
[form!]StatusBar1.FontUnderline(I) [= setting%]

Remarks
The settings for the FontBold, FontItalic, FontStrikethru, and FontUnderline properties
are:

Setting Description
True Turns on the formatting in that style.
False (default) Turns off the formatting in that style.

Use these font properties to format the look of the text displayed in text-field of the
StatusBar control.

Note
Fonts available in Visual Basic vary according to your system configuration, display
devices, and printing devices.    Font-related properties can be set only to values for
which actual fonts exist.In general, you should change the FontName property before you
set size and style attributes with the FontSize, FontBold, FontItalic, FontStrikethru, and
FontUnderline properties.   
However, when you set TrueType fonts to smaller than 8 points, you should set the point
size with the FontSize property, then set the FontName property, and then set the size
again with the FontSize property.    The Windows environment uses a different font for
TrueType fonts that are smaller than 8 points.
The index in these property arrays are the same indexes as in the FieldWidth and
Message arrays.

Data Type
Integer (Boolean)

FontName Property Array, StatusBar Control
see also

Description
Determines the font used to display the messages for a text-field.

Usage
[form!]StatusBar1.FontName(I) [= setting$]

Remarks
The default for this property is determined by the system.    Fonts available with Visual
Basic vary according to your system configuration, display devices, and printing devices. 
Font-related properties can be set only to values for which fonts exist.
The index in the FontName property array is the same index as in the FieldWidth and
Message arrays.
In general, you should change FontName before setting size and style attributes with the
FontSize, FontBold, FontItalic, FontStrikethru and FontUnderline properties.
On systems running Windows 3.0, the fonts "Helv" or "Tms Rmn" are called "MS Sans
Serif" and "MS Serif", respectively.    In code, if you set FontName to "Helv," then test
whether the FontName is set to "Helv," the result will be False, since it will be changed
internally to "MS Sans Serif."

Data Type
String (Boolean)

Font3D Property, StatusBar Control
see also example

Description
Specifies how that StatusBar control displays the text in the text-fields.

Usage
[form!]StatusBar1.Font3D [= setting%]

Remarks
The StatusBar can display fonts in five different ways. The Font3D property takes one of
the following values to specify the way the Statusbar displays the font in a text-field.

Value Short name Description
0 DEFAULT (Default) Simply displays the selected font.
1 RAISED Displays the font slightly raised.
2 HEAVY_RAISED Displays a heavy raised font.
3 INSET Displays the font slightly inset.
4 HEAVY_INSET Display a heavy inset font.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

DateTimeFormat Property Array, StatusBar Control
see also example

Description
Specifies the date or time-format for text-fields with FieldType 4 (FIELD_DATETIME).

Usage
[form!]StatusBar1.DateTimeFormat(I) [= setting$]

Remarks
To format dates and times, you can use either the commonly used formats that have
been predefined    in Visual Basic or create user-defined time formats using standard
characters that have special meaning when used in a format expression.
The following table shows the predefined data format names you can use and the
meaning of each:

Format Name Description
General Date Display a date and time (e.g. 4/3/93 05:34 PM).
Long Date Display a Long Date, as defined in the International

section of the Control Panel.
Medium Date Display a date in the same form as the Short Date, as

defined in the International section of the Control
Panel, except spell out the month abbreviation.

Short Date Display a Short Date, as defined in the
International section of the Control Panel.

Long Time Display a Long Time, as defined in the International
section of the Control Panel. Long Time includes hours,
minutes, seconds.

Medium Time Display time in 12-hour format using hours and
minutes and the AM/PM designator.

Short Time Display a time using the 24-hour format (e.g.
17:45)

The following table shows the characters you can use to create user-defined date/time
formats and the meaning of each:

Character Meaning
c Display the date as ddddd and display the time as t t t

t t, in that order.    Only date information is displayed if
there is no fractional part to the date serial number;
only time information is displayed if there is no integer
portion.

d Display the day as a number without a leading zero (1-
31).

dd Display the day as a number with a leading zero (01-
31).

ddd Display the day as an abbreviation (Sun-Sat).
dddd Display the day as a full name (Sunday-Saturday).
ddddd Display a date serial number as a complete date

(including day, month, and year) formatted according
to the Short Date setting in the International section of

the Windows Control Panel.    The default Short Date
format is m/d/yy.

dddddd Display a date serial number as a complete date
(including day, month, and year) formatted according
to the Long Date setting in the International section of
the Control Panel.    The default Long Date    format is
mmmm dd, yyyy.

w Display the day of the week as a number (1 for Sunday
through 7 for Saturday.)

ww Display the week of the year as a number (1-53).
m Display the month as a number without a leading zero

(1-12).    If m immediately follows h or hh, the minute
rather than the month is displayed.

mm Display the month as a number with a leading zero (01-
12).    If m immediately follows h or hh, the minute
rather than the month is displayed.

mmm Display the month as an abbreviation (Jan-Dec).
mmmm Display the month as a full month name (January-

December).
q Display the quarter of the year as a number (1-4).
y Display the day of the year as a number (1-366).
yy Display the year as a two-digit number (00-99).
yyyy Display the year as a four-digit number (100-9999).
h Display the hour as a number without leading zeros (0-

23).
hh Display the hour as a number with leading zeros (00-

23).
n Display the minute as a number without leading zeros

(0-59).
nn Display the minute as a number with leading zeros (00-

59).
s Display the second as a number without leading zeros

(0-59).
ss Display the second as a number with leading zeros (00-

59).
t t t t t Display a time serial number as a complete time

(including hour, minute, and second) formatted using
the time separator defined by theTime Format in the
International section of the Control Panel.    A leading
zero is displayed if the Leading Zero option is selected
and the time is before 10:00 A.M. or P.M.    The default
time format is h:mm:ss.

AM/PM Use the 12-hour clock and display an uppercase AM
with any hour before noon; display an uppercase PM
with any hour between noon and 11:59 PM.

am/pm Use the 12-hour clock and display a lowercase AM with
any hour before noon; display a lowercase PM with any
hour between noon and 11:59 PM.

A/P Use the 12-hour clock and display an uppercase A with
any hour before noon; display an uppercase P with any
hour between noon and 11:59 PM.

a/p Use the 12-hour clock and display a lowercase A with
any hour before noon; display a lowercase P with any
hour between noon and 11:59 PM.

AMPM Use the 12-hour clock and display the contents of the

1159 string (s1159) in the WIN.INI file with any hour
before noon; display the contents of the 2359 string
(s2359) with any hour between noon and 11:59 PM.   
AMPM can be either uppercase or lowercase, but the
case of the string displayed matches the string as it
exists in the WIN.INI file.    The default format is AM/PM.

The following are examples of user-defined date and time formats:

Format Display
m/d/yy 12/7/58
d-mmmm-yy 7-December-58
d-mmmm 7 December
mmmm-yy December 58
hh:mm AM/PM 08:50 PM
h:mm:ss a/p 8:50:35 p
h:mm 20:50
h:mm:ss 20:50:35
m/d/yy h:mm 12/7/58 20:50

Data Type
String

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

NumLock, CapsLock and ScrollLock Properties, StatusBar Control
see also example

Description
Sets or returns the current state of the num-lock, caps-lock or scroll-lock key.

Usage
[form!]StatusBar1.NumLock [= setting%]
[form!]StatusBar1.CapsLock [= setting%]
[form!]StatusBar1.ScrollLock [= setting%]

Remarks
You can use the NumLock, CapsLock and ScrollLock properties to set or get the state of the
num-lock, caps-lock keys.
The NumLock, CapsLock and ScrollLock properties are only available at run-time, since they
are of no use in the design time environment (its much quicker to press one of the keys
than to set it explicitly through the Properties-window). These properties always reflect the
current state of the toggle keys, so if you set the NumLock property to one (ON) and a user
presses the Num-Lock key after that, getting the NumLock property will return zero (OFF).
There are two possible settings for the NumLock, CapsLock and ScrollLock properties:

Value Short Name Meaning
0 OFF The state of num--lock, caps-lock or scroll-lock is

(turned) off.
1 ON The state of num--lock, caps-lock or scroll-lock is

(turned) on.

Data Type
Integer (Enumerated)

The example demonstrates the use of the NumLock, CapsLock and ScrollLock properties.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

BackColor Property Array, StatusBar Control
see also example

Description
Sets or retrieves the field back-color of one of the text-fields of the StatusBar control.

Usage
[form!]StatusBar1.BackColor(I) [= color&]

Remarks
Visual Basic uses the Microsoft Windows environment RGB scheme for colors.    Each
property has the following ranges of settings:

Range of settings Description
Normal RGB colors Colors by using the RGB or QBColor functions in code.
System default colors Colors specified with system color constants from

CONSTANT.TXT, a Visual Basic file that specifies system
defaults.    The Windows environment substitutes the
user's choices as specified in the user's Control Panel
settings.

For the StatusBar control the default settings at design time are:
BackColor(I) set to BUTTON_FACE system color as specified in CONSTANT.TXT.

Setting the BackColor property does not affect messages already displayed to avoid
flickering if you want to display a new message in a different color. To force the current
message to be redisplayed in the new color set the RedrawField property to the number
of the field to redisplay.
The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).    The high byte of
a number in this range equals 0; the lower three bytes, from least to most significant
byte, determine the amount of red, green, and blue, respectively.    The red, green, and
blue components are each represented by a number between 0 and 255 (&HFF).    If the
high byte is not 0, Visual Basic uses the system colors, as defined in the user's Control
Panel and enumerated in CONSTANT.TXT.

Data Type
Long

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

AutoToggle Property, StatusBar Control
see also example

Description
Specifies if the user can toggle the special keys num-lock, caps-lock and scroll-lock by
double clicking on a field with FieldType 1, 2 or 3.

Usage
[form!]StatusBar1.AutoToggle [= setting%]

Remarks
The AutoToggle property only has effect when you have defined fields with FieldType 1, 2 or
3. There are two possible settings for the AutoToggle property:

AutoToggle Result
True Toggles num-lock, caps-lock or scroll-lock when a user

double-clicks on such a field.
False Does not toggle num-lock, caps-lock or scroll-lock on

double-clicks.

Data Type
Integer (Boolean)

The example demonstrates the use of the AutoToggle property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

AdjustFieldHeight Property, StatusBar Control
see also

Description
Specifies if the height of the text-field should depend on the currently selected font for
that text-field or should be set to the height of the text-field with the largest font.

Usage
[form!]StatusBar1.AdjustFieldHeight [= setting%]

Remarks
The AdjustFieldHeight allows you to have fields with different heights on the StatusBar
depending on the size of the Font that has been specified for that field. If you've specified
for example a FontSize of 10 for field 0 and a FontSize of 14 for field 1, setting the
AdjustFieldHeight property to FALSE will cause all fields to have the same height. If you set
AdjustFieldHeight to TRUE,    will make the height of field 0 smaller than the height of Field
1.
There are two possible settings for the AdjustFieldHeight property:

AdjustFieldHeight Result
True The height of each text-field depends on the size of the

font specified for that field. If fonts are different among
text-fields, the heights of the fields will not always be
the same.

False (Default) The height of each text-field depends on the
size of the largest font specified in all text-fields. This
will ensure an equal height for all text-fields.

Data Type
Integer (Boolean)

FloodInvertText Property, StatusBar Control
see also example

Description
Specifies whether or not to change the color of the text according to the progress of the
percentage in the text of the text-field specified by the the FloodField property.

Usage
[form!]StatusBar1.FloodInvertText [= setting%]

Remarks
The FloodInvertText property affects the text that is displayed in the text-field specified by
the FloodField property. There are two possible settings for the FloodInvertText property:

FloodInvertText Color of text-field
True The text-color of the text displayed in the text-field is

different for the text on the progress indicator bar and
the space next to the bar. The text-color in the space
right next to the bar is set to the same color as the
color specified in the FloodColor property. The text on
the bar is drawn with the color specified in the
ForeColor property array for that field.

False The entire text is displayed in the color specified in the
ForeColor property array.

Data Type
Integer (Boolean)

The example demonstrates the use of the FloodInvertText property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

FloodShowPct Property, StatusBar Control
see also example

Description
Specifies whether or not to include the percentage in the text of the text-field specified
by the the FloodField property.

Usage
[form!]StatusBar1.FloodShowPct [= setting%]

Remarks
The FloodShowPct property affects the text that is displayed in the text-field specified by
the FloodField property. Another thing that affects the text is the Message property for
that text-field. There are four possible combinations:

FloodShowPct Message Contents of text-field
True some text The text specified in the Message property-array

followed by a colon, followed by the percentage (taken
from the FloodPercent property).

True empty Only the percentage.
False some text The text specified in the Message property-array.
False empty empty

Data Type
Integer (Boolean)

The example demonstrates the use of the FloodShowPct property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

FloodPercent Property, StatusBar Control
see also example

Description
Specifies the percentage of the text-field specified by the FloodField property to be filled.

Usage
[form!]StatusBar1.FloodPercent [= setting%]

Remarks
The FloodPercent property sets or retrieves the percentage of the text-field that will be
filled with the color specified by the FloodColor property. If the FloodPercent property is
set to a value smaller than zero or greater than one hundred it's value is automatically
adjusted. This setting will have no effect is the FloodField property is set to -1 or the
FloodField property is set to a field with a FieldWidth of zero.

Data Type
Integer

The example demonstrates the use of the FloodPercent property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

FloodField Property, StatusBar Control
see also example

Description
Specifies which field is to be used as a progress indicator.

Usage
[form!]StatusBar1.FloodField [= setting%]

Remarks
The FloodField property allows you to use one field of the StatusBar control as a progress
indicator. The message for this field (specified in the Message property array) will be
placed before the percentage specified in the FloodPercent property. A colon is
automatically inserted between the message and the percentage. If no message is
specified for the text-field the colon is omitted. The FloodShowPct property specifies
whether or not to append the actual percentage to the message specified for the
FloodField.
If the FloodField property is set to a field that has a FieldWidth of zero, the FloodField is
not displayed.
The field is filled with the color specified by the FloodColor property.

Data Type
Integer

The example demonstrates the use of the FloodPercent property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

FloodColor Property, StatusBar Control
see also example

Description
Sets or retrieves the color used to paint the area inside a text-field when the statusbar is
used as a percentage indicator (only when the FloodField property is setting is other than
-1).

Usage
[form!]StatusBar1.FloodColor [= color&]

Remarks
The FloodColor property has the same range of settings as standard Visual Basic color
settings.
Use this property with FloodField and FloodPercent to cause the StatusBar to display a
colored percentage bar indicating the degree of completion of a task.
At design time you can set this property by entering a hexadecimal value in the Settings
box or by    clicking the three dots that appear at the right of the Settings box. Clicking
this button displays a dialog    box that allows you to select a FloodColor setting from the
Visual Basic Color Palette.

Note
The FloodColor property defaults to bright blue: RGB (0, 0, 255). The valid range for a
normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number in this range
equals 0; the lower three bytes, from least to most significant, determine the amount of
red, green, and blue, respectively. The red, green, and blue components are each
represented by a number between 0 and 255 (&HFF).

Data Type
Long

The example demonstrates the use of the FloodPercent property. To use this example
create a form with one StatusBar control and paste the code into the Declarations
section of your form.

SpaceAfter Property Array, StatusBar Control
see also example

Description
Sets or retrieves the spacing between the text-fields StatusBar control.

Usage
[form!]StatusBar1.SpaceAfter(I) [= setting%]

Remarks
The SpaceAfter property array allows you to define the spacing between the text-fields in
the StatusBar control. It specifies how much space (in pixels) to leave behind a text-field
before the next text-field is shown. The index in the SpaceAfter array is the same index
as in the FieldWidth and Message arrays. So if you set SpaceAfter(0) to 4, you define a
spacing of 4 pixels after the first field. The default setting is 3 pixels, but you can set it to
any value you like.

Data Type
Integer

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

RedrawField Property, StatusBar Control
see also

Description
Forces the StatusBar to redisplay one or all text-fields.

Usage
[form!]StatusBar1.RedrawField [= setting%]

Remarks
If you specify an alternate Alignment and ForeColor for a text-field, the field is not
updated automatically. This is done on purpose to avoid flickering if you want to display a
new message in a different color.
If you only want to change the forecolor or alignment of a field without changing the
message, use the RedrawField property to redisplay the message with the new settings.
Specifying -1 for the RedrawField property forces all messages to be redrawn. Of course,
you can also force the StatusBar control to redraw all fields by using the Refresh method
or by assigning the Message property of a field to itself (StatusBar1.Message(0) =
StatusBar1.Message(0)), but using the RedrawField property is more efficient.
This property is not available at design time and write-only at run-time.

Data Type
Integer

Message Property Array, StatusBar Control
see also example

Description
Sets or retrieves the text to be displayed in one of the text-fields of the StatusBar
control.

Usage
[form!]StatusBar1.Message(I) [= message$]

Remarks
Setting a new message for a text-field automatically redisplays the message, so be sure
to set other properties, like Alignment or ForeColor, before you change the message. If
the message is to big to fit in the field, the message is clipped.
Only text-fields with a FieldWidth bigger than zero are displayed. Fields with zero-length
are not displayed regardless of the message you specify for them

Data Type
String

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

MenuTagsField Property, StatusBar Control
see also

Description
Specifies which field of the StatusBar should be used to display menu tags.

Usage
[form!]StatusBar1.MenuTagsField [= setting%]

Remarks
The StatusBar is capable of tracking menu selections on the form it is placed upon. Every
time a menu-item is selected, the StatusBar obtains the Tag property from that menu-
item and displays it in the textfield specified by the MenuTagsField property.
So, the only thing you have to do to make the StatusBar automatically display messages
when a user is browsing menu's, is to specify a sensible message in the Tag property of
all menu-items and set the MenuTagsField property to the number of the textfield you
want to display these messages in.
To prevent the StatusBar from displaying the text in the Tag-property of a menu, set this
property to -1 or set it to a field width FieldWidth set to zero.
To show a message whenever the user select an item from the system menu on your
form, react to the SysMenuBrowse event of the StatusBar control.

Special considerations
Only one StatusBar on a form can display the menu tags. If you have more than one
StatusBar on a form and both of them have a value for the MenuTagsField other than -1,
the StatusBar control that is loaded first will display the menu-messages. If you'd like to
switch between the two StatusBar controls set the MenuTagsField property of the first
StatusBar to -1 and reset the MenuTagsField property of the second StatusBar (e.g.
StatusBar2.MenuTagsField = StatusBar2.MenuTagsField).
When you use a StatusBar on a form that has it's MDIChild property set to True, the
MenuTagsField property for that StatusBar will have no effect. Instead, menu-messages
for menus on MDI-child forms will be displayed in the StatusBar of the MDI-parent form
(MDIForm) if there is one.

Data Type
Integer

LeftMargin, RightMargin Properties, StatusBar Control

Description
Sets or retrieves the left of right-margin for the StatusBar control.

Usage
[form!]StatusBar1.LeftMargin [= setting%]
[form!]StatusBar1.RightMargin [= setting%]

Remarks
The LeftMargin property specifies how much room to leave before displaying the first
text-field, the RightMargin property specifies the space to reserve after the last text-field.
The Left- and Right margin are always expressed in pixels, regardless of the ScaleMode
of the StatusBar's parent.

Data Type
Integer

ForeColor Property Array, StatusBar Control
see also example

Description
Sets or retrieves the field text-color of one of the text-fields of the StatusBar control.

Usage
[form!]StatusBar1.ForeColor(I) [= color&]

Remarks
Visual Basic uses the Microsoft Windows environment RGB scheme for colors.    Each
property has the following ranges of settings:

Range of settings Description
Normal RGB colors Colors by using the RGB or QBColor functions in code.
System default colors Colors specified with system color constants from

CONSTANT.TXT, a Visual Basic file that specifies system
defaults.    The Windows environment substitutes the
user's choices as specified in the user's Control Panel
settings.

For the StatusBar control the default settings at design time are:
ForeColor(I) set to the WINDOW_TEXT system color as specified in CONSTANT.TXT.

Setting the ForeColor property does not affect messages already displayed to avoid
flickering if you want to display a new message in a different color. To force the current
message to be redisplayed in the new color set the RedrawField property to the number
of the field to redisplay.
The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).    The high byte of
a number in this range equals 0; the lower three bytes, from least to most significant
byte, determine the amount of red, green, and blue, respectively.    The red, green, and
blue components are each represented by a number between 0 and 255 (&HFF).    If the
high byte is not 0, Visual Basic uses the system colors, as defined in the user's Control
Panel and enumerated in CONSTANT.TXT.
To display text in the Windows environment, the text-colors must be solid.    If the text-
colors you've selected are not displayed, the selected color may be dithered that is,
comprised of up to three different-colored pixels.    If you choose a dithered color for the
text, the nearest solid color will be substituted.

Data Type
Long

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

FieldWidth Property Array, StatusBar Control
see also example

Description
Set or retrieves the field width of one of the text-fields of the StatusBar control.

Usage
[form!]StatusBar1.FieldWidth(I) [= setting%]

Remarks
The FieldWidth of a field is always expressed in pixels. A field that has a field-width of
zero is not displayed, nor is it's SpaceAfter property used in calculating the relative
distances between the text-fields.

Data Type
Integer

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

Alignment Property Array, StatusBar Control
see also example

Description
Specifies the alignment for a text-field of the StatusBar control.

Usage
[form!]StatusBar1.Alignment(I) = Alignment%

Remarks
The StatusBar can align each text-field in three ways. The Alignment property array takes
one of the following values to specify the alignment of a text-field.

Value Short name Description
0 LEFT (Default) Aligns the text at the left-edge of the text-

field.
1 RIGHT Aligns the text at the right-edge of the text-field.
2 CENTER Centers the text in the text-field.
The index in the Alignment property array is the same index in the Message property
array.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

FieldType Property Array, StatusBar Control
see also example

Description
Sets or retrieves the field-type for the text-field with the same index.

Usage
[form!]StatusBar1.FieldType(I) [= FieldType%]

Remarks
The StatusBar supports five different field-types. The FieldType property array takes one
of the following values to specify the type of a text-field.

Value Short name Description
0 FIELD_NORMAL (Default) The text-field displays the programmer

defined text.
1 FIELD_CAPSLOCK Displays the current status of the CapsLock key. If the

CapsLock key is toggled on, the text from the property
CapsLockOffText is displayed, otherwise the
CapsLockOnText is displayed.

2 FIELD_NUMLOCK Displays the current status of the NumLock key.
3 FIELD_SCROLLOCK Displays the current status of the ScrollLock key.
4 FIELD_DATETIME Displays a date or time depending on the

corresponding setting in the DateTimeFormat property
array.

The index in the FieldType property array is the same index in the Message and
FieldWidth property arrays.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

Insert button
If you click this button, a new textfield is inserted before the currently selected field. If you
already defined 20 fields, the last textfield is moved off the StatusBar. All fields, including
the currently selected field are moved one place down, to accomodate space for the new
field.

Delete button
If you click this button, the currently selected textfield is deleted. All fields after this field
are moved one place up. If you already defined 20 fields, the last field will become
available again.

Up button
This button (together with the down-button) allows you to exchange textfields. If you click
this button, the currently selected textfield is exchanged with the textfield right before it,
effectively moving it one place up.

Down button
This button (together with the up-button) allows you to exchange textfields. If you click this
button, the currently selected textfield is exchanged with the textfield after it, effectively
moving it one place down.

Backcolor selection
You can select a field's background color by clicking the 'Color'-button. A preview of the
selected font-properties, forecolor and backcolor for the currenctly selected field are shown
to the left of the Color-button.
Clicking the Color-button will pop-up a standard Windows common-dialog where you can
select a color from the available set of colors.
The background color can also be set by specifying a value for the BackColor property array
at run-time.

Font and Forecolor selection
You can select the font that is to displayed and the text-color by clicking the 'Font'-button. A
preview of the selected font-properties and forecolor for the currenctly selected field are
shown to the left and below the Font-button.
Clicking the Font-button will pop-up a standard Windows common-dialog where you can
select all font-related properties.
You can also set the font-related properties by setting the appropriate entries in the
FontName, FontSize, FontBold, FontItalic, FontStrikeThru and FontUnderline property arrays
at run-time.
The text-color can also be set by specifying a value for the ForeColor property array at run-
time.

Cancel button
To ignore the changes you've made for the settings for the text-fields of the StatusBar
control, click the Cancel-button. The StatusBar will remain exactly the same as it was
before you selected the FieldProperties property.

Ok button
To confirm the settings for the text-fields of the StatusBar control, click the Ok-button.
All settings you've specified will be applied to the StatusBar control. Now you can see
directly, how your StatusBar will look when the program is run.

Message
Allows you to set a message that will be displayed in the currently selected text-field of the
StatusBar control. If the message is to big to fit in the field, the message is clipped.
Only text-fields with a FieldWidth bigger than zero are displayed. Fields with zero-length are
not displayed regardless of the message you specify for them.
You can also set this property by setting the appropriate entry in the Message property
array at run-time.

FloodField Checkbox
The FloodField check-box allows you to use one field of the StatusBar control as a progress
indicator. The message for this field (specified in the Message property array) will be placed
before the percentage specified in the FloodPercent property. A colon is automatically
inserted between the message and the percentage. If no message is specified for the text-
field the colon is omitted. The FloodShowPct property specifies whether or not to append
the actual percentage to the message specified for the FloodField.
If the FloodField check-box is check on a field that has a FieldWidth of zero, the FloodField is
not displayed.
The field is filled with the color specified by the FloodColor property.
You can also set this property by specifying a value for the FloodField property at run-time.

ExpandField Checkbox
The effect of the checking ExpandField check-box is that all other field are positioned first
and that after that the remaining space is filled by the currently selected text-field (starting
at the correct position of course). If you don't want a text-field to be stretched, find the field
with the ExpandField check-box checked and uncheck it or check the ExpandField check-
box on a text-field with FieldWidth set to zero. The FieldWidth property for the text-field that
the ExpandField points to, will be regarded as the minimum width for that text-field. If the
StatusBar control isn't wide enough to display all fields, the fields will extend off the
StatusBar control.
You can also set this property by specifying a value for the ExpandField property at run-
time.

Space After
The SpaceAfter text-box array allows you to define the spacing between the text-fields in
the StatusBar control. It specifies how much space (in pixels) to leave behind the currently
selected text-field before the next text-field is shown. So if you set the value to 4, you
define a spacing of 4 pixels after the currently selected field. The default setting is 3 pixels,
but you can set it to any value you like.
You can also set this property by setting the appropriate entry in the SpaceAfter property
array at run-time.

Field Size
You can enter the width of the currently selected field in this text-box. The FieldWidth of a
text-field is always expressed in pixels. A field that has a field-width of zero is not
displayed, nor is it's SpaceAfter property used in calculating the relative distances between
the text-fields.
You can also set this property by setting the appropriate entry in the FieldWidth property
array at run-time.

Alignment selection combo-box
Select the alignment (the way text is justified within a text-field) for the currently selected
field. Possible values are:

Value Description
Left (Default) The text is left aligned in the text-field
Right Aligns the text to the right of the text-field
Center Centers the text in the text-field

You can also set this property by setting the appropriate entry in the Alignment property
array at run-time.

Field Outline selection combo-box
Select the outline (the border around the text-field) for the currently selected field. Possible
values are:

Value Description
None The StatusBar draws no border around the text-field
Raised Draws a raised border around the text-field.
Inset (Default) Draws an inset border around the text-field.

You can also set this property by setting the appropriate entry in the FieldOutline property
array at run-time.

FieldType selection combo-box
Select the type of text-field for the currently selected field. Possible values are:

Value Description
Normal Field (Default) The text-field displays the text specfied in the

Message property array.
CapsLock Field Displays the current status of the CapsLock key. If the

CapsLock key is toggled on, the text from the property
CapsLockOffText is displayed, otherwise the
CapsLockOnText is displayed.

NumLock Field Displays the current status of the NumLock key.
ScrollLock Field Displays the current status of the ScrollLock key.
Date/Time Field Displays a date or time depending on the setting of the

Date/Time format combo box or the string specified in
the    DateTimeFormat property array.

You can also set this property by setting the appropriate entry in the FieldType property
array at run-time.

Date/Time Format combo-box
This combo-box lets you define the format that will be used for a Date/Time field. You can
select a predefined setting or you can type in a customized string. Legal formats include all
date/time format strings you can use with the Visual Basic Format$    function. Setting this
property is equivalent to specifying a value for the DateTimeFormat property array at run-
time.

Field Listbox
Choose the field you want to specify from this listbox. When you select a field from the list,
it's settings are displayed in the combo-boxes and text-boxes to the right of the listbox.

FieldProperties Dialog, StatusBar Control

Description
Allows you to set the properties for all text-fields on the StatusBar at design time, using a
dialog-window.

Usage
Double click on the three dots next to the property to display the Field-Properties Dialog.
The dialog looks like this. To get help on the way to use the dialog, click the various parts
of it for detailed information.

FieldOutline Property Array, StatusBar Control
see also example

Description
Sets or retrieves the way the StatusBar draws the outline for the text-field with the same
index.

Usage
[form!]StatusBar1.FieldOutline(I) [= FieldOutline%]

Remarks
The StatusBar supports three different field-outlines. The FieldType property array takes
one of the following values to specify the outline that is drawn around the border of a
text-field.

Value Short name Description
0 NONE The StatusBar draws no border around the text-field
1 RAISED Draws a raised border around the text-field.
2 INSET (Default) Draws an inset border around the text-field.
The index in the FieldOutline property array is the same index in the Message and
FieldWidth property arrays.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

ExpandField Property, StatusBar Control
see also example

Description
The ExpandField property specifies which field is stretched to the size of the StatusBar
control.

Usage
[form!]StatusBar1.ExpandField [= setting%]

Remarks
The effect of the ExpandField property is that all other field are positioned first and that
after that the remaining space is filled by the text-field specified by the ExpandField
property (starting at the correct position of course). The FieldWidth property for the text-
field that the ExpandField points to, will be regarded as the minimum width for that text-
field. If the StatusBar control isn't wide enough to display all fields, the fields will extend
off the StatusBar control.
If you don't want any field stretched to the full size of your window, set the value of the
ExpandField property to -1 or set the ExpandField property to a text-field with FieldWidth
set to zero.

Data Type
Integer

The example shows a Form_Load that initializes three text-fields on a StatusBar control.
To use this example create a form with one StatusBar control and paste the code into the
Declarations section of your form.

CapsLockOffText, CapsLockOnText, NumLockOffText,
NumLockOnText, ScrollLockOffText, ScrollLockOnText Properties,
StatusBar Control
see also

Description
Specify the text to show for a text-field of type 2 (Caps-lock), 3 (Num-lock) or 4 (Scroll-
lock).

Usage
[form!]StatusBar1.KeyOnText [= setting$]
[form!]StatusBar1.KeyOffText [= setting$]

Remarks
The KeyOnText is shown when the specified key is toggled on, KeyOffText is shown when
the key is toggled off. You can specify the type of a text-field by setting the FieldType
property.

Data Type
String

The example shows you a how these properties are used. To use this example create a
form with one StatusBar control and paste the code into the Declarations section of your
form.

Events
The StatusBar control supports the following events:
Click DblClick DragDrop DragOver
SysMenuBrowse Toggle

Methods
The StatusBar control supports the following methods:
Drag Move Refresh ZOrder

Properties
All the properties that apply to the Status Bar control are listed in the following table. All
properties that are marked with an asterisk (*) are only available at run-time.
Align AdjustFieldHeight Alignment * AutoToggle
BackColor * CapsLock * CapsLockOffText CapsLockOnText
DateTimeFormat * Enabled ExpandField FieldOutline *
FieldProperties FieldType * FieldWidth * FloodColor
FloodField FloodInvertText FloodPercent Font3D
FontBold * FontItalic * FontName * FontSize *
FontStrikethru * FontUnderline * ForeColor * Height
hWnd Index Left LeftMargin
MenuTagsField Message * Name NumLock *
NumLockOffText NumLockOnText Parent RedrawField *
RightMargin ScrollLock * ScrollLockOffText ScrollLockOnText
SpaceAfter * Tag Top Visible
Width
Note the Alignment, BackColor, CapsLock, DateTimeFormat, FontBold, FontName,
FontItalic, FontSize, FontStrikethur, FontUnderline, FieldOutline, FieldType, FieldWidth,
ForeColor, NumLock, RedrawField and ScrollLock properties are only available at run-time.
These properties can also be set at design time using the FieldProperties dialog-box. Name
is the default property for the StatusBar control.

The StatusBar Custom Control
Properties Methods Events

Description
The Microsoft Visual Basic programming system for Windows comes with a large set of
3D controls. Unfortunately, a 3D status-bar, as used in almost every MS-Windows
application is lacking. Therefore the the Status Bar Custom Control was designed. This
control allows you to create a very versatile status bar for all your applications.

File Name
TOOLBARS.VBX

Object Type
StatusBar

Toolbox Icon

Remarks
The StatusBar allows an application to display a status-bar at the bottom of a form. The
statusbar has 20 fully configurable text-fields, which can be completely defined at design
time. Also, the statusbar provides standard fields like the Num-lock, Caps-lock and Scroll-
lock toggles and a fully configurable dat/time field. The StatusBar control can also be
used as a progress indicator. Besides that, the StatusBar is capable of automatically
showing explanation messages in one of it's fields when the user is browsing through
menu's.

Usage
To use the StatusBar, perform the following steps:

1. Add the toolbars custom control to your project. The StatusBar and the ButtonBar
icons will appear in the Visual Basic tool-palette.

2. Add a StatusBar control to your form by double clicking on the icon in the ToolBox.

3. Define the fields for the StatusBar with the FieldProperties dialog or set the
FieldWidth and FieldType properties for the number of fields you want to display in
the Form_Load event procedure of your form and specify a Message for each field
with FieldType 0.

4. Eventually add code to respond to a Click on a certain field in the StatusBar.

Distribution Note    When you create and distribute applications that use the StatusBar
control, you should install the file TOOLBARS.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory.

Copyright Notice
The Toolbar Custom Controls Version 1.52 are Copyright © 1994/1995

SheAr software, Enschede, the Netherlands
e-mail: vbx_dev@shear.iaf.nl

The Toolbar Custom Controls, Version 1.52

Description
The Microsoft Visual Basic programming system for Windows comes with a large set of
3D controls. Unfortunately, a 3D status-bar and a 3D button-bar, as used in almost every
MS-Windows application are lacking. Therefore, the Toolbar custom controls
(TOOLBARS.VBX) were developed. This VBX contains two custom controls: the Status Bar
Custom Control and the Button Bar custom control. These control allows you to create
very versatile status- and buttonbars for all your applications.

File Name
TOOLBARS.VBX

Object Types
StatusBar, ButtonBar

Toolbox Icons

StatusBar control

ButtonBar control

Remarks
The StatusBar allows an application to display a status-bar at the bottom of a form. The
statusbar has 20 fully configurable text-fields, which can be completely defined at
design-time. Also, the statusbar provides standard fields like the Num-lock, Caps-lock
and Scroll-lock toggles and a fully configurable date/time field. The StatusBar control can
also be used as a progress indicator.
The ButtonBar allows an application to display a button-bar at the top of a form. The
button-bar has 30 fully configurable buttons, which can be completely defined at design-
time. The only thing you have to do is specify the bitmap for the up-position of each
button. The ButtonBar control calculates the different bitmaps for the down and the two
disabled states (up and down) of the button. Like all applications today, the ButtonBar
supports tool-tips, a small window that pops up when the user rests the mouse-cursor on
a button or a control placed on the ButtonBar that explains the function of the button
(small hint). The ButtonBar calls these hints ButtonHints. It is also possible to connect the
button-bar to the status-bar and specify (longer) messages for each button to be shown
when the button is selected.
The ButtonBar also offers a PicClip like property 'ButtonPictures'. With this you can
specify a bitmap that contains all the small bitmaps for the buttons on the ButtonBar.
This avoids having to distribute all the small bitmaps that make up the ButtonBar since
the bitmap is saved within your application. A little application (written in Visual Basic)
that is distributed with the TOOLBARS.VBX allows easy creation and modification of such
a large bitmap.

Distribution Note    When you create and distribute applications that use one of the
ToolBar controls, you should install the file TOOLBARS.VBX in the customer's Microsoft
Windows \SYSTEM subdirectory.

See also
Click Event

See also
ButtonPicture Property
ButtonPictures Property
Picture Property Array
PictureDown Property Array
PictureDisabled Property Array
PictureDisabledDown Property Array

See also
ButtonPictures Property
ButtonColumns, ButtonRows Properties
Picture Property Array
PictureDown Property Array
PictureDisabled Property Array
PictureDisabledDown Property Array

See also
ButtonPicture Property
ButtonColumns, ButtonRows Properties
Picture Property Array
PictureDown Property Array
PictureDisabled Property Array
PictureDisabledDown Property Array

See also
ButtonHint Property Array
HintBackColor Property
HintDelay Property
HintOffsetX, HintOffsetY Properties
HintPosition Property
ShowHints Property
ShowDisabledHints Property

See also
ButtonHint Property Array
ControlHwnd, ControlHint, ControlMessage Properties
HintBackColor Property
HintDelay Property
HintPosition Property
ShowHints Property
ShowDisabledHints Property

See also
ButtonHint Property Array
ControlHwnd, ControlHint, ControlMessage Properties
HintBackColor Property
HintDelay Property
HintOffsetX, HintOffsetY Properties
ShowHints Property
ShowDisabledHints Property

See also
ButtonMessage Property Array
hWndStatusBar Property
StatusField Property
StatusBar Custom Control
ShowDisabledMessages Property

See also
HintBackColor Property
HintDelay Property
HintOffsetX, HintOffsetY Properties
HintPosition Property
ShowHints Property

See also
ButtonHint Property Array
ControlHwnd, ControlHint, ControlMessage Properties
HintBackColor Property
HintOffsetX, HintOffsetY Properties
HintPosition Property
ShowHints Property

See also
ButtonHint Property Array
ControlHwnd, ControlHint, ControlMessage Properties
FontBold Property
FontItalic Property
FontName Property
FontSize Property
FontStrikethru Property
FontUnderline Property
HintDelay Property
HintOffsetX, HintOffsetY Properties
HintPosition Property
ShowHints Property

See also
ButtonMessage Property Array
ButtonHint Property Array
ControlHwnd, ControlHint, ControlMessage Properties
FontBold Property
FontItalic Property
FontName Property
FontSize Property
FontStrikethru Property
FontUnderline Property
HintBackColor Property
HintDelay Property
HintOffsetX, HintOffsetY Properties
HintPosition Property
ShowDisabledHints Property

See also
ButtonHint Property Array
ControlHwnd, ControlHint, ControlMessage Properties
FontBold Property
FontItalic Property
FontName Property
FontStrikethru Property
FontUnderline Property
HintBackColor Property
HintDelay Property
HintOffsetX, HintOffsetY Properties
HintPosition Property
ShowHints Property
ShowDisabledHints Property

See also
ButtonHint Property Array
ControlHwnd, ControlHint, ControlMessage Properties
FontBold Property
FontItalic Property
FontSize Property
FontStrikethru Property
FontUnderline Property
HintBackColor Property
HintDelay Property
HintOffsetX, HintOffsetY Properties
HintPosition Property
ShowHints Property
ShowDisabledHints Property

See also
ButtonHint Property Array
ControlHwnd, ControlHint, ControlMessage Properties
FontName Property
FontSize Property
HintBackColor Property
HintDelay Property
HintOffsetX, HintOffsetY Properties
HintPosition Property
ShowHints Property
ShowDisabledHints Property

See also
ButtonEnabled Property Array
ButtonGroup Property Array
ButtonState Property Array
ButtonType Property Array
IgnoreInvisibleButtons Property

See also
ButtonEnabled Property Array
ButtonGroup Property Array
ButtonState Property Array
ButtonType Property Array
ButtonVisible Property Array

See also
ButtonGroup Property Array
ButtonState Property Array
ButtonType Property Array
ButtonVisible Property Array

See also
ButtonMessage Property Array
hWndStatusBar Property
ShowDisabledMessages Property
ShowStatusMessage Property
StatusBar Custom Control

See also
ButtonMessage Property Array
ShowStatusMessage Property
StatusField Property
StatusBar Custom Control

See also
ButtonPictures Property
ButtonPicture Property Array
ButtonColumns, ButtonRows Properties
ButtonEnabled Property Array
ButtonState Property Array
ButtonVisible Property Array
Picture Property Array
PictureDown Property Array
PictureDisabled Property Array

See also
ButtonPictures Property
ButtonPicture Property Array
ButtonColumns, ButtonRows Properties
ButtonEnabled Property Array
ButtonState Property Array
ButtonVisible Property Array
Picture Property Array
PictureDisabled Property Array
PictureDisabledDown Property Array

See also
ButtonPictures Property
ButtonPicture Property Array
ButtonColumns, ButtonRows Properties
ButtonEnabled Property Array
ButtonState Property Array
ButtonVisible Property Array
Picture Property Array
PictureDown Property Array
PictureDisabledDown Property Array

See also
ButtonPictures Property
ButtonPicture Property Array
ButtonColumns, ButtonRows Properties
ButtonEnabled Property Array
ButtonState Property Array
PictureDown Property Array
PictureDisabled Property Array
PictureDisabledDown Property Array

See also
ButtonGroup Property Array
ButtonState Property Array
ButtonType Property Array
ButtonVisible Property Array

See also
Picture Property Array

See also
hWndStatusBar Property
ShowDisabledMessages Property
ShowStatusMessage Property
StatusField Property
StatusBar Custom Control

See also
ButtonState Property Array
ButtonType Property Array
ButtonVisible Property Array
GroupAllowAllUp Property Array

See also
ButtonGroup Property Array
ButtonType Property Array
ButtonVisible Property Array
GroupAllowAllUp Property Array

See also
ButtonGroup Property Array
ButtonState Property Array
ButtonVisible Property Array
GroupAllowAllUp Property Array

See also
ButtonPictures Property
ButtonPicture Property Array
ButtonColumns, ButtonRows Properties
Picture Property Array
PictureDown Property Array
PictureDisabled Property Array
PictureDisabledDown Property Array

See also
ButtonEnabled Property Array
ButtonMessage Property Array
ShowStatusMessage Property

See also
ButtonEnabled Property Array
ButtonHint Property Array
ShowHints Property

' Button/ControlHints Example, ButtonBar Control

Sub Form_Load ()
Dim I As Integer
Const BUTTON_NORMAL = 0
Const BUTTON_2STATE = 1

Const BELOW_RIGHT = 4

' Fill Combo1 with all available fonts
For I = 0 To Screen.FontCount - 1

Combo1.AddItem Screen.Fonts(I)
Next I

' Select the first font in the combo-box
Combo1.ListIndex = 0

' Align the button to the top of the window
' and set the height
ButtonBar1.Align = 1
ButtonBar1.Height = 400

' Set the fontproperties for the Button-Hint popup
ButtonBar1.FontName = "Times New Roman"
ButtonBar1.FontSize = 12
ButtonBar1.FontBold = False

' Make sure the button-hints appear (after half a second) and set the
' backcolor for the hint-window to light-blue
ButtonBar1.ShowHints = True
ButtonBar1.HintDelay = 500
ButtonBar1.HintBackColor = QBColor(9)

' Set the Hint-position and offsets
ButtonBar1.HintPosition = BELOW_RIGHT
ButtonBar1.HintOffsetX = -4
ButtonBar1.HintOffsetY = 2

' Set the button-pictures.
ButtonBar1.Picture(0)=LoadPicture("c:\vb\bitmaps\toolbar3\tbl-up.bmp")
ButtonBar1.Picture(1)=LoadPicture("c:\vb\bitmaps\toolbar3\tbc-up.bmp")
ButtonBar1.Picture(2)=LoadPicture("c:\vb\bitmaps\toolbar3\tbr-up.bmp")
ButtonBar1.Picture(3)=LoadPicture("c:\vb\bitmaps\toolbar3\tbd-up.bmp")

' Set the button-hints for each button
ButtonBar1.ButtonHint(0)= "left-tab"
ButtonBar1.ButtonHint(1)= "center-tab"
ButtonBar1.ButtonHint(2)= "right-tab"
ButtonBar1.ButtonHint(3)= "decimal-tab"

' Set the ControlHint for the fonts combo-box

' Combo1 must be defined on the ButtonBar control
ButtonBar1.ControlHwnd = Combo1.hWnd
ButtonBar1.ControlHint = "select font"

' Make the first four buttons a member of group 0
ButtonBar1.ButtonGroup(0) = 0
ButtonBar1.ButtonGroup(1) = 0
ButtonBar1.ButtonGroup(2) = 0
ButtonBar1.ButtonGroup(3) = 0

' Specify that in group 0, all buttons may be raised
ButtonBar1.GroupAllowAllUp(0) = True

' Mark buttons 0-3 as 2-state buttons
For I = 0 To 3

ButtonBar1.ButtonType(I) = BUTTON_2STATE
Next I

End Sub

' ButtonPictures example, ButtonBar Control

' to use this example, create a form with a buttonbar control that
' contains a bitmap that contains the bitmaps for the different
' states of each button on the ButtonBar.
' You can use the sample bitmap BUTTONS.BMP that comes with the
' TOOLBARS.VBX

Sub Form_Load ()
Dim I As Integer
Dim CelStart As Integer

 ButtonBar1.ButtonPictures = LoadPicture("BUTTONS.BMP")
 ButtonBar1.ButtonRows = 30
 ButtonBar1.ButtonColumns = 4

 For I = 0 To 29
 CelStart = I * 4
 ButtonBar1.Picture(I) = ButtonBar1.ButtonPicture(CelStart)
 ButtonBar1.PictureDisabled(I) = ButtonBar1. ButtonPicture(CelStart + 1)
 ButtonBar1.PictureDown(I) = ButtonBar1. ButtonPicture(CelStart + 2)
 ButtonBar1.PictureDisabledDown(I) = ButtonBar1. ButtonPicture(CelStart +
3)
 Next I
End Sub

' Usage with the StatusBar Control, ButtonBar Control

Sub Form_Load ()
Dim I As Integer

Const BUTTON_2STATE = 1

' Constants for ShowStatusMessage property
Const NEVER = 0
Const ONSELECT = 1
Const MOUSEOVER = 2
Const RIGHTMOUSE = 3

WindowState = 2
ButtonBar1.Align = 1
ButtonBar1.Height = 400
StatusBar1.Align = 2
StatusBar1.Height = 400

' Specify the pictures for the first four buttons
ButtonBar1.Picture(0)=LoadPicture("c:\vb\bitmaps\toolbar3\tbl-up.bmp")
ButtonBar1.Picture(1)=LoadPicture("c:\vb\bitmaps\toolbar3\tbc-up.bmp")
ButtonBar1.Picture(2)=LoadPicture("c:\vb\bitmaps\toolbar3\tbr-up.bmp")
ButtonBar1.Picture(3)=LoadPicture("c:\vb\bitmaps\toolbar3\tbd-up.bmp")

' Make all buttons members of group 0
ButtonBar1.ButtonGroup(0) = 0
ButtonBar1.ButtonGroup(1) = 0
ButtonBar1.ButtonGroup(2) = 0
ButtonBar1.ButtonGroup(3) = 0
' Allow all buttons in the group to be up.
ButtonBar1.GroupAllowAllUp(0) = True

' Set all buttons to type 1 (2-state button)
For I = 0 To 3

ButtonBar1.ButtonType(I) = BUTTON_2STATE
Next I

' Specify messages to display in the statusbar
ButtonBar1.ButtonMessage(0) = "Set a left align tab"
ButtonBar1.ButtonMessage(1) = "Set a centered tab"
ButtonBar1.ButtonMessage(2) = "Set a right align tab"
ButtonBar1.ButtonMessage(3) = "Set a decimal tab"

' Specify the statusbar and the field to display the messages
ButtonBar1.hWndStatusBar = StatusBar1.hWnd
ButtonBar1.StatusField = 0

' Make sure the messages appear when the mouse is over a button
ButtonBar1.ShowStatusMessage = MOUSEOVER

' Set a few properties of the statusbar control
StatusBar1.FieldWidth(0) = 100
StatusBar1.Message(0) = "Static message for field 0"

End Sub

' ButtonTag Example, ButtonBar Control

Sub Form_Load ()
Const BUTTON_NORMAL = 0
Const BUTTON_2STATE = 1

 WindowState = 2
 ButtonBar1.Align = 1
 ButtonBar1.Height = 400

 ButtonBar1.Picture(0)=LoadPicture("c:\vb\bitmaps\toolbar\lft-up.bmp")
 ButtonBar1.ButtonTag(0) = "Left Align"
 ButtonBar1.Picture(1)=LoadPicture("c:\vb\bitmaps\toolbar\rt-up.bmp")
 ButtonBar1.ButtonTag(1) = "Right Align"
 ButtonBar1.Picture(2)=LoadPicture("c:\vb\bitmaps\toolbar\cnt-up.bmp")
 ButtonBar1.ButtonTag(2) = "Center"
 ButtonBar1.PictureDisabled(0)=LoadPicture("c:\vb\bitmaps\toolbar\lft-
dis.bmp")
 ButtonBar1.PictureDisabled(1)=LoadPicture("c:\vb\bitmaps\toolbar\rt-
dis.bmp")
 ButtonBar1.PictureDisabled(2)=LoadPicture("c:\vb\bitmaps\toolbar\cnt-
dis.bmp")
 ButtonBar1.ButtonType(0) = BUTTON_2STATE
 ButtonBar1.ButtonType(1) = BUTTON_2STATE
 ButtonBar1.ButtonType(2) = BUTTON_2STATE
 ButtonBar1.ButtonGroup(0) = 0
 ButtonBar1.ButtonGroup(1) = 0
 ButtonBar1.ButtonGroup(2) = 0

 ButtonBar1.ButtonState(0) = True
 ButtonBar1.GroupAllowAllUp(0) = False
End Sub

Sub ButtonBar1_Click(Button As Integer, Group As Integer, State As Integer)
Select Case ButtonBar1.ButtonTag(Button)

Case "Left Align": MsgBox "Text will be left aligned"
Case "Right Align": MsgBox "Text will be right aligned"
Case "Center": MsgBox "Text will be centered"

End Select
End Sub

' Click Example, ButtonBar Control

Sub Form_Load ()
Const BUTTON_NORMAL = 0
Const BUTTON_2STATE = 1

 WindowState = 2
 ButtonBar1.Align = 1
 ButtonBar1.Height = 400

 ButtonBar1.Picture(0)=LoadPicture("c:\vb\bitmaps\toolbar\lft-up.bmp")
 ButtonBar1.Picture(1)=LoadPicture("c:\vb\bitmaps\toolbar\rt-up.bmp")
 ButtonBar1.Picture(2)=LoadPicture("c:\vb\bitmaps\toolbar\cnt-up.bmp")
 ButtonBar1.PictureDisabled(0)=LoadPicture("c:\vb\bitmaps\toolbar\lft-
dis.bmp")
 ButtonBar1.PictureDisabled(1)=LoadPicture("c:\vb\bitmaps\toolbar\rt-
dis.bmp")
 ButtonBar1.PictureDisabled(2)=LoadPicture("c:\vb\bitmaps\toolbar\cnt-
dis.bmp")
 ButtonBar1.ButtonType(0) = BUTTON_2STATE
 ButtonBar1.ButtonType(1) = BUTTON_2STATE
 ButtonBar1.ButtonType(2) = BUTTON_2STATE
 ButtonBar1.ButtonGroup(0) = 0
 ButtonBar1.ButtonGroup(1) = 0
 ButtonBar1.ButtonGroup(2) = 0

 ButtonBar1.ButtonEnabled(2)=False

 ButtonBar1.ButtonState(0) = True
 ButtonBar1.GroupAllowAllUp(0) = False
End Sub

Sub ButtonBar1_Click(Button As Integer, Group As Integer, State As Integer)
Label1.Alignment = Button
Select Case Button

Case 0: Label1.Caption = "Text is now left-aligned"
Case 1: Label1.Caption = "Text is now right-aligned"
Case 2: 'Should never get here since the centered button is

disabled
 Label1.Caption = "Text is now centered"

End Select
End Sub

' ButtonBar Initialize Example, ButtonBar Control

Sub Form_Load ()
Dim I As Integer
Const BUTTON_NORMAL = 0
Const BUTTON_2STATE = 1

Const RAISED = 0
Const DEPRESSED = -1

' Align the button to the top of the window
' and set the height
ButtonBar1.Align = 1
ButtonBar1.Height = 400

' Set the first four button-pictures.
ButtonBar1.Picture(0)=LoadPicture("c:\vb\bitmaps\toolbar3\tbl-up.bmp")
ButtonBar1.Picture(1)=LoadPicture("c:\vb\bitmaps\toolbar3\tbc-up.bmp")
ButtonBar1.Picture(2)=LoadPicture("c:\vb\bitmaps\toolbar3\tbr-up.bmp")
ButtonBar1.Picture(3)=LoadPicture("c:\vb\bitmaps\toolbar3\tbd-up.bmp")
' Specify five pixels room after button #3
ButtonBar1.SpaceAfter(3) = 5
' Make the first four buttons a member of group 0
ButtonBar1.ButtonGroup(0) = 0
ButtonBar1.ButtonGroup(1) = 0
ButtonBar1.ButtonGroup(2) = 0
ButtonBar1.ButtonGroup(3) = 0
' Specify that in group 0, all buttons may be raised
ButtonBar1.GroupAllowAllUp(0) = True

' Create four extra buttons
ButtonBar1.Picture(4)=LoadPicture("c:\vb\bitmaps\toolbar3\lft-up.bmp")
ButtonBar1.Picture(5)=LoadPicture("c:\vb\bitmaps\toolbar3\cnt-up.bmp")
ButtonBar1.Picture(6)=LoadPicture("c:\vb\bitmaps\toolbar3\rt-up.bmp")
ButtonBar1.Picture(7)=LoadPicture("c:\vb\bitmaps\toolbar3\jst-up.bmp")
' Leave 5 pixels space after button #7
ButtonBar1.SpaceAfter(7) = 5
' Make the second four buttons a member of group 1
ButtonBar1.ButtonGroup(4) = 1
ButtonBar1.ButtonGroup(5) = 1
ButtonBar1.ButtonGroup(6) = 1
ButtonBar1.ButtonGroup(7) = 1
' Specify that at least one button of the group must be depressed
ButtonBar1.GroupAllowAllUp(1) = False

' Make three extra buttons
ButtonBar1.Picture(8)=LoadPicture("c:\vb\bitmaps\toolbar3\bld-up.bmp")
ButtonBar1.Picture(9)=LoadPicture("c:\vb\bitmaps\toolbar3\itl-up.bmp")
ButtonBar1.Picture(10)=LoadPicture("c:\vb\bitmaps\toolbar3\ulin-up.bmp")

' Leave 5 pixels room after button 10

ButtonBar1.SpaceAfter(10) = 5

' Mark buttons 0-10 as 2-state buttons
For I = 0 To 10

ButtonBar1.ButtonType(I) = BUTTON_2STATE
Next I

' Press button 4 down
ButtonBar1.ButtonState(4) = True

' Create the last button
ButtonBar1.Picture(11)=LoadPicture("c:\vb\bitmaps\toolbar3\hlp-up.bmp")
End Sub

ControlHwnd, ControlHint, ControlMessage Properties, ButtonBar
Control
see also example

Description
Sets or retrieves the text to show in the Hint popup-window and the text to show in a
field of the StatusBar when the mouse is over a Control in the ButtonBar.

Usage
[form!]ButtonBar1.ControlHwnd [= setting%]
[form!]ButtonBar1.ControlHint [= setting$]
[form!]ButtonBar1.ControlMessage [= setting$]

Remarks
The ButtonBar can automatically display an explanation-text for each button or control
you have on it. The exaplanation text is shown after a certain period (see the HintDelay
property) when the mouse is over a button. The Hint is shown in a small window just
below or above the button.
Since there is no control array of controls you place on the ButtonBar, you can't specify a
array-entry for a ControlHint (like in the ButtonHint property array). Therefore, the
ControlHwnd and ControlHint properties work together to let you specify the Hints for
every control you've placed on the ButtonBar.
First, you specify for which control on the ButtonBar you want to set a Hint-message, by
setting the ControlHwnd property (e.g. ButtonBar1.ControlHwnd = Combo1.hWnd). This
makes the control 'active'. After that, you can set a Hint-message for the 'active' control
by setting the ControlHint property.
The Hints are only shown is the ButtonBar's ShowHints property is set to TRUE.
Furthermore, you can specify a message to be shown in a field of the StatusBar if the
ButtonBar is connected to one. Here also, the ControlHwnd and ControlMessage
properties work together to let you specify the messages for the StatusBar. See the
ButtonMessage property array for details.

Data Type
Integer, String

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control that use ButtonHints. To use this example create a form with one ButtonBar
control. Place a combo-box on the ButtonBar and paste the code into the Declarations
section of your form.

ButtonHint Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the text to show in the ButtonHint popup-window when the mouse is
over a button in the ButtonBar.

Usage
[form!]ButtonBar1.ButtonHint(I) [= setting$]

Remarks
The ButtonBar can automatically display an explanation-text for each button or control
you have on it. The exaplanation text is shown after a certain period (see the HintDelay
property) when the mouse is over a button. The ButtonHint is shown in a small window
just below or above the button. To specify a message for a control placed on the
ButtonBar use the ControlHwnd and ControlHint properties.
Don't confuse the ButtonHint with the ButtonMessage property, because they're not the
same. The ButtonHint is usually a small-text displayed in a small popup-window just
below the button, whereas the ButtonMessage can be very large and is displayed in a
field on the StatusBar control.
The ButtonHints are only shown if the ButtonBar's ShowHints property is set to TRUE.

Data Type
String

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control that use ButtonHints. To use this example create a form with one ButtonBar
control. Place a combo-box on the ButtonBar and paste the code into the Declarations
section of your form.

HintOffsetX, HintOffsetY Properties, ButtonBar Control
see also example

Description
Sets or retrieves the relative offset from the Button or Control where the ButtonBar will
position the ButtonHint popup-window depending on the setting of the HintPosition
property.

Usage
[form!]ButtonBar1.HintOffsetX [= setting%]
[form!]ButtonBar1.HintOffsetY [= setting%]

Remarks
You can use the HintOffsetX and HintOffsetY properties to further specify the position
where the ButtonBar will display the Button/ControlHint for the button or control the
mouse is currently over. You can control the distance from the button or control by
setting the HintOffsetX and HintOffsetY properties. The HintOffsetX modifies the
horizontal position of the Hint-popup window, the HintOffsetY property modifies the
vertical position of the Hint-popup window.
The HintOffsetY specifies the distance the Hint-window will have from the button or
control it is currently displayed for. So, a bigger value will cause the Hint-popup window
to be further apart from the button or control. A negative value will cause the Hint-popup
and the control to overlap.
These properties have a default value of 4.

Data Type
Integer

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control that use ButtonHints. To use this example create a form with one ButtonBar
control. Place a combo-box on the ButtonBar and paste the code into the Declarations
section of your form.

HintPosition Property, ButtonBar Control
see also example

Description
Sets or retrieves the position where the ButtonBar will position the ButtonHint popup-
window.

Usage
[form!]ButtonBar1.HintPosition [= setting%]

Remarks
You can use the HintPosition property to specify the position where the ButtonBar will
display the Button/ControlHint for the button or control the mouse is currently over. You
can control the distance from the button or control by setting the HintOffsetX and
HintOffsetY properties.
The HintPosition property takes one of the following values to specify where the
ButtonBar shows the defined Button/ControlHints:

Value Short name Description
0 ABOVE_LEFT Displays the Hint popup window aligned to the left and

above the button or control the mouse is over.
1 ABOVE_RIGHT Displays the Hint popup window aligned to the right

and above the button or control the mouse is over.
2 ABOVE_CENTER Displays the Hint popup window centered and above

the button or control the mouse is over.
3 BELOW_LEFT (Default) Displays the Hint popup window aligned to

the left and below the button or control the mouse is
over.

4 BELOW_RIGHT Displays the Hint popup window aligned to the right
and below the button or control the mouse is over.

5 BELOW_CENTER Displays the Hint popup window centered and below
the button or control the mouse is over.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control that use ButtonHints. To use this example create a form with one ButtonBar
control. Place a combo-box on the ButtonBar and paste the code into the Declarations
section of your form.

HintDelay Property, ButtonBar Control
see also example

Description
Sets or retrieves the time (in milliseconds) the ButtonBar will wait before displaying the
ButtonHint popup-window.

Usage
[form!]ButtonBar1.HintDelay [= setting&]

Remarks
You can use the HintDelay property to specify the number of milliseconds the ButtonBar
will wait before displaying the ButtonHint for the button or control the mouse currently is
over. Once the specified delay has past and the mouse is still over the same button or
control, the Hint popup-window is displayed right below or above that button. The Hint
popup-window remains visible as long as the mouse-pointer is over one of the buttons or
controls on the ButtonBar. If you move the mouse to a position where no button or
control is present, the Hint popup will disappear.

Data Type
Long

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control that use ButtonHints. To use this example create a form with one ButtonBar
control. Place a combo-box on the ButtonBar and paste the code into the Declarations
section of your form.

HintBackColor Property, ButtonBar Control
see also example

Description
Sets or retrieves the backcolor of the ButtonHint popup-window.

Usage
[form!]ButtonBar1.HintBackColor [= color&]

Remarks
Visual Basic uses the Microsoft Windows environment RGB scheme for colors.    The
HintBackColor property has the following ranges of settings:

Range of settings Description
Normal RGB colors Colors by using the RGB or QBColor functions in code.
System default colors Colors specified with system color constants from

CONSTANT.TXT, a Visual Basic file that specifies system
defaults.    The Windows environment substitutes the
user's choices as specified in the user's Control Panel
settings.

For the ButtonBar control the default setting for the Hint popup-window is
RGB(255,255,128), which is light-yellow.
The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF).    The high byte of
a number in this range equals 0; the lower three bytes, from least to most significant
byte, determine the amount of red, green, and blue, respectively.    The red, green, and
blue components are each represented by a number between 0 and 255 (&HFF).    If the
high byte is not 0, Visual Basic uses the system colors, as defined in the user's Control
Panel and enumerated in CONSTANT.TXT.

Data Type
Long

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control that use ButtonHints. To use this example create a form with one ButtonBar
control. Place a combo-box on the ButtonBar and paste the code into the Declarations
section of your form.

ShowHints Property, ButtonBar Control
see also example

Description
Specifies whether or not to show the Button/ControlHint-popup windowif the mouse-
cursor is over a button or a control on the ButtonBar.

Usage
[form!]ButtonBar1.ShowHints [= setting%]

Remarks
The ButtonBar can automatically display an explanation-text for each button and control
you have on it. The exaplanation text is shown after a certain period (see the HintDelay
property) when the mouse is over a button or control defined on the buttonbar. The
ButtonHint    or ControlHint is shown in a small window just below or above the button or
control, depending on the setting of the HintPosition and HintOffsetX and HintOffsetY
properties.
Don't confuse the ButtonHint with the ButtonMessage property, because they're not the
same. The ButtonHint is usually a small-text displayed in a small popup-window just
below or above the button, whereas the ButtonMessage can be very large and is
displayed in a field on the StatusBar control.
The ShowHints property takes one of the following values to specify the if the ButtonBar
shows the defined ButtonHints.

Value Short name Description
0 FALSE (Default) Does not display Button/ControlHints.
-1 TRUE Displays the Button/ControlHint window after a small

period of time (usually half a second) for the button or
control the cursor is on.

Data Type
Integer (Boolean)

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control that use ButtonHints. To use this example create a form with one ButtonBar. Place
a combo-box on the ButtonBar control and paste the code into the Declarations section
of your form.

ShowDisabledMessages Property, ButtonBar Control
see also

Description
Specifies whether or not to show the Button or ControlMessage for disabled buttons or
controls.

Usage
[form!]ButtonBar1.ShowDisabledMessages [= setting%]

Remarks
The ButtonBar can automatically display an explanation-text for each button and control
you have on it in a textfield of a StatusBar control.. Whether these messages are shown
depends on the settings of the ShowStatusMessage property and the
ShowDisabledMessages property.
The ShowDisabledMessages property takes one of the following values to specify the if
the ButtonBar shows the defined Button- or ControlHints for disabled buttons or controls.

Value Short name Description
0 FALSE (Default) Does not display Button/ControlMessages if

the button or control is disabled. If the
ShowStatusMessage property is set to True,
Button/ControlMessages for all other buttons and
controls are displayed.

-1 TRUE Displays the Button/ControlMessage for all buttons or
controls on the ButtonBar even if they are disabled, if
the ShowStatusMessage property is also set to True.

Data Type
Integer (Boolean)

ShowDisabledHints Property, ButtonBar Control
see also

Description
Specifies whether or not to show the Button/ControlHint-popup window for disabled
buttons or controls.

Usage
[form!]ButtonBar1.ShowDisabledHints [= setting%]

Remarks
The ButtonBar can automatically display an explanation-text for each button and control
you have on it. Whether these messages are shown depends on the settings of the
ShowHints property and the ShowDisabledHints property.
The ShowDisabledHints property takes one of the following values to specify the if the
ButtonBar shows the defined Button- or ControlHints for disabled buttons or controls.

Value Short name Description
0 FALSE (Default) Does not display Button/ControlHints if the

button or control is disabled. If the ShowHints property
is set to True, Button/ControlHints for all other buttons
and controls are displayed.

-1 TRUE Displays the Button/ControlHint for all buttons or
controls on the ButtonBar even if they are disabled, if
the ShowHints property is also set to True.

Data Type
Integer (Boolean)

Click Event, ButtonBar Control
see also example

Description
Occurs when the user presses and then releases the left-mouse button over a button of
the ButtonBar control. You can not trigger the Click event for the ButtonBar control in
code.

Syntax
Sub ButtonBar1_Click (Index As Integer, Button As Integer, Group As Integer, State
As Integer)

Remarks
The argument Index uniquely identifies a control if it is in a control array.    The Button
argument specifies the number of the button that was clicked on. You can use this
number to take some action whenever the user clicks on a button. The Group argument
specifies the group the clicked button is a member of. If the Group argument is -1, the
button is not a member of a group. The State argument specifies the state of the button.
This argument is always True (-1) if the ButtonType of the button is 0 (BUTTON_NORMAL).
If the ButtonType of the clicked button is 1 (BUTTON_2STATE) then the State argument
specifies whether the button is up (State = False) or down (State = True).
The example shows you a possible way to react to the Click event. To use this example
create a form with one ButtonBar control and a Label control. Then, paste the code into
the Declarations section of your form.

FontSize Property, ButtonBar Control
see also example

Description
Determines the size of the font to be used for the Hints-popup.

Usage
[form!]ButtonBar1.FontSize [= setting]

Remarks
Use this font property to specify the size of the text displayed in the Hint floating window.

Note
Fonts available in Visual Basic vary according to your system configuration, display
devices, and printing devices.    Font-related properties can be set only to values for
which actual fonts exist.In general, you should change the FontName property before you
set size and style attributes with the FontSize, FontBold, FontItalic, FontStrikethru, and
FontUnderline properties.   
However, when you set TrueType fonts to smaller than 8 points, you should set the point
size with the FontSize property, then set the FontName property, and then set the size
again with the FontSize property.    The Windows environment uses a different font for
TrueType fonts that are smaller than 8 points.

Data Type
Single

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control that use ButtonHints with a different FontSize than normal. To use this example
create a form with one ButtonBar control. Place a combo-box on the ButtonBar and paste
the code into the Declarations section of your form.

FontBold, FontItalic, FontStrikethru and FontUnderline Properties,
ButtonBar Control
see also example

Description
Determine font styles for the Button/ControlHints in the following formats:    FontBold,
FontItalic, FontStrikethru, and FontUnderline.

Usage
[form!]ButtonBar1.FontBold [= setting%]
[form!]ButtonBar1.FontItalic [= setting%]
[form!]ButtonBar1.FontStrikethru [= setting%]
[form!]ButtonBar1.FontUnderline [= setting%]

Remarks
The settings for the FontBold, FontItalic, FontStrikethru, and FontUnderline properties
are:

Setting Description
True Turns on the formatting in that style.
False (default) Turns off the formatting in that style.

Use these font properties to format the look of the text displayed in the Hint floating
window.

Note
Fonts available in Visual Basic vary according to your system configuration, display
devices, and printing devices.    Font-related properties can be set only to values for
which actual fonts exist.In general, you should change the FontName property before you
set size and style attributes with the FontSize, FontBold, FontItalic, FontStrikethru, and
FontUnderline properties.   
However, when you set TrueType fonts to smaller than 8 points, you should set the point
size with the FontSize property, then set the FontName property, and then set the size
again with the FontSize property.    The Windows environment uses a different font for
TrueType fonts that are smaller than 8 points.

Data Type
Integer (Boolean)

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control that use ButtonHints with a different text-layout than normal. To use this example
create a form with one ButtonBar control. Place a combo-box on the ButtonBar and paste
the code into the Declarations section of your form.

FontName Property, ButtonBar Control
see also example

Description
Determines the font used to display the Hints.

Usage
[form!]ButtonBar1.FontName [= setting$]

Remarks
The default for this property is determined by the system.    Fonts available with Visual
Basic vary according to your system configuration, display devices, and printing devices. 
Font-related properties can be set only to values for which fonts exist.
In general, you should change FontName before setting size and style attributes with the
FontSize, FontBold, FontItalic, FontStrikethru and FontUnderline properties.
On systems running Windows 3.0, the fonts "Helv" or "Tms Rmn" are called "MS Sans
Serif" and "MS Serif", respectively.    In code, if you set FontName to "Helv," then test
whether the FontName is set to "Helv," the result will be False, since it will be changed
internally to "MS Sans Serif."

Data Type
String (Boolean)

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control that use ButtonHints with a different FontName than normal. To use this example
create a form with one ButtonBar control. Place a combo-box on the ButtonBar and paste
the code into the Declarations section of your form.

OutlineChildren Property, ButtonBar Control

Description
Apllies a 3D look to controls placed on the ButtonBar.

Usage
[form!]ButtonBar1.OutlineChildren [= setting%]

Remarks
The ButtonBar can automatically give all the controls you place on it a 3D look by
drawing a raised or inset outline. The OutlineChildren property takes one of the following
values to specify the way the ButtonBar applies the 3D effect:

Value Short name Description
0 NONE (Default) Does not draw an outline around children.
1 RAISED Displays a raised border around each control placed on

the ButtonBar.
2 INSET Displays an inset border around each controls placed

on the ButtonBar.
The 3D effect is useful when you want to put more than just buttons on the ButtonBar
(like a font-selection combo-box). These control can appear raised or inset just by setting
the OutlineChildren property.
The OutlineChildren property only has effect on controls that have a window-handle.
Therefore, graphical controls (like labels) do not receive an outline.

Warning
Since the ButtonBar has to keep track of all children placed on it and their position, the
maximum number of windowed child controls (that is; controls with a window-handle) on
the ButtonBar is limited to 30.

Data Type
Integer (Enumerated)

StatusField Property, ButtonBar Control
see also example

Description
Specifies the text-field of the status-bar that is to display the messages specified for the
buttons.

Usage
[form!]ButtonBar1.StatusField [= setting%]

Remarks
The StatusField property sets or retrieves the text-field of the status-bar that is to display
the messages you specify in the ButtonMessage property array. If the text-field has a
FieldWidth of zero, the messages are not displayed.
The messages are displayed in the statusbar specified by the hWndStatusBar property.

Data Type
Integer

The example shows a Form_Load that initializes some buttons with messages on a
ButtonBar control. To use this example create a form with one ButtonBar and one
StatusBar control and paste the code into the Declarations section of your form.

hWndStatusBar Property, ButtonBar Control
see also example

Description
Specifies the window handle of the status-bar that is to display the messages specified
for the buttons.

Usage
[form!]ButtonBar1.hWndStatusBar [= [form!].StatusBar1.hWnd]

Remarks
The hWndStatusBar property sets or retrieves the window handle for the status-bar that
is to display the messages you specify in the ButtonMessage property array. The window-
handle is checked to see if it is really the window handle of a statusbar control. If it isn't,
a runtime error is generated.
The messages are displayed in the statusbar in the text-field specified by the StatusField
property. This property defaults to 0.

Data Type
Integer

The example shows a Form_Load that initializes some buttons with messages on a
ButtonBar control. To use this example create a form with one ButtonBar and one
StatusBar control and paste the code into the Declarations section of your form.

PictureDisabledDown Property Array, ButtonBar Control
see also example ButtonPictures example

Description
Defines the picture to use for showing the down state of a disabled button on the
ButtonBar.

Usage
[form!]ButtonBar1.PictureDisabledDown(I) [= picture]

The Picture property settings are:

Setting Description
(none) (Default) No picture.
(bitmap) You can set this property using the LoadPicture function

on a bitmap.

Remarks
If you don't like the default look of the down-state of a disabled button, you can set the
PictureDisabledDown property to another bitmap that has a different disabled down-state
look. Like the Picture property array, the picture is assumed to be a bitmap that is
already formatted as a button.
The ButtonBar control makes some assumptions about the format of the picture you
specify for the PictureDown property in order to be able to create the different pictures
needed for the other states of the button. All pictures in the TOOLBAR3 directory that
come with Visual Basic have a correct layout. You can use or modify these pictures as
needed.

Data Type
Integer

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

Hint Since you have to set a picture for each button, you can use the ButtonPictures
property of the ButtonBar to define a bitmap that contains all the button-pictures. You
can use the sample bitmap BUTTONS.BMP that comes with the TOOLBARS.VBX for this.
This allows you to load all the bitmaps needed for the ButtonBar in a single for-loop. An
example clarifies the use.

PictureDown Property Array, ButtonBar Control
see also example ButtonPictures example

Description
Defines the picture to use for showing the down state of a button on the ButtonBar.

Usage
[form!]ButtonBar1.PictureDown(I) [= picture]

The Picture property settings are:

Setting Description
(none) (Default) No picture.
(bitmap) You can set this property using the LoadPicture function

on a bitmap.

Remarks
If you don't like the default look of the down-state of a button, you can set the
PictureDown property to another bitmap that has a different down-state look. Like the
Picture property array, the picture is assumed to be a bitmap that is already formatted as
a button.
The ButtonBar control makes some assumptions about the format of the picture you
specify for the PictureDown property in order to be able to create the different pictures
needed for the other states of the button. All pictures in the TOOLBAR3 directory that
come with Visual Basic have a correct layout. You can use or modify these pictures as
needed.

Data Type
Integer

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

Hint Since you have to set a picture for each button, you can use the ButtonPictures
property of the ButtonBar to define a bitmap that contains all the button-pictures. You
can use the sample bitmap BUTTONS.BMP that comes with the TOOLBARS.VBX for this.
This allows you to load all the bitmaps needed for the ButtonBar in a single for-loop. An
example clarifies the use.

PictureDisabled Property Array, ButtonBar Control
see also example ButtonPictures example

Description
Defines the picture to use for showing a disabled button on the ButtonBar.

Usage
[form!]ButtonBar1.PictureDisabled(I) [= picture]

The Picture property settings are:

Setting Description
(none) (Default) No picture.
(bitmap) You can set this property using the LoadPicture function

on a bitmap.

Remarks
If you don't like the default look of the disabled pictures (all black pixels transformed to
gray), you can set the PictureDisabled property to another bitmap that has a different
disabled look. Like the Picture property array, the picture is assumed to be a bitmap that
is already formatted as a button.
When the PictureDisabled property of the button is set, and no PictureDisabledDown
picture is present for button, the ButtonBar uses this picture to calculate the pictures for
the disabled up and down states of the button.
The ButtonBar control makes some assumptions about the format of the picture you
specify for the PictureDisabled property in order to be able to create the different
pictures needed for the other states of the button. All pictures in the TOOLBAR3 directory
that come with Visual Basic have a correct layout. You can use or modify these pictures
as needed.

Data Type
Integer

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

Hint Since you have to set a picture for each button, you can use the ButtonPictures
property of the ButtonBar to define a bitmap that contains all the button-pictures. You
can use the sample bitmap BUTTONS.BMP that comes with the TOOLBARS.VBX for this.
This allows you to load all the bitmaps needed for the ButtonBar in a single for-loop. An
example clarifies the use.

Picture Property Array, ButtonBar Control
see also example ButtonPictures example

Description
Defines the picture to use for showing a button on the ButtonBar.

Usage
[form!]ButtonBar1.Picture(I) [= picture]

The Picture property settings are:

Setting Description
(none) (Default) No picture.
(bitmap) You can set this property using the LoadPicture function

on a bitmap.

Remarks
The Picture property array is the most important property for the ButtonBar. It specifies
the picture to be used for a button on the ButtonBar. The picture is assumed to be a
bitmap that is already formatted as a button.
If there are no pictures specified for the PictureDown, PictureDisabled and
PictureDisabledDown property arrays for the button, the ButtonBar uses the picture in
the Picture property array to calculate the pictures for the down and disabled states of
the button.
The ButtonBar control makes some assumptions about the format of the picture you
specify for the Picture property in order to be able to create the different pictures needed
for the other states of the button. All pictures in the TOOLBAR3 directory that come with
Visual Basic have a correct layout. You can use or modify these pictures as needed.
The following table specifies the operations that the ButtonBar will perform on a bitmap
for the different ButtonStates and ButtonEnabled properties of the button if there are no
pictures specified for the down, disabled and disabled-down states:

ButtonState ButtonEnabled Description
UP (0) True Value from the Picture property unchanged.
UP False Value from the Picture property with all black pixels

transformed to dark-gray.
DOWN (-1) True Value from the Picture property shifted one pixel

to the right and below. The dark-gray bevel is removed
and the white bevel is replaced with a dark gray bevel.

DOWN False Value from the Picture property modified as with the
ButtonEnabled property set to True, but with all black
pixels transformed to dark-gray.

Data Type
Integer

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

Hint Since you have to set a picture for each button, you can use the ButtonPictures
property of the ButtonBar to define a bitmap that contains all the button-pictures. You
can use the sample bitmap BUTTONS.BMP that comes with the TOOLBARS.VBX for this.
This allows you to load all the bitmaps needed for the ButtonBar in a single for-loop. An
example clarifies the use.

GroupAllowAllUp Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the ability of buttons in a group to be all in the up-state.

Usage
[form!]ButtonBar1.GroupAllowAllUp(I) [= setting%]

Remarks
The GroupAllowAllUp property settings are:

Setting Description
True (Default) Allows all buttons in the group to be raised.
False At least one button in the group must be depressed.

The GroupAllowAllUp property specifies if the user can deselect all buttons in a group, or
that at least one button must be in the down position. Normally, when buttons are
selected in a group, there is always one button in the down state. Clicking this button will
leave it in the down position. When you specify True for the GroupAllowAllUp property,
the user can deselect all buttons, by clicking the button that is down.

Data Type
Integer (Boolean)

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

SpaceAfter Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the spacing between the buttons on a ButtonBar control.

Usage
[form!]ButtonBar1.SpaceAfter(I) [= setting%]

Remarks
The SpaceAfter property array allows you to define the spacing between the buttons on
the ButtonBar control. It specifies how much space (in pixels) to leave behind a button
before the next button is shown. The index in the SpaceAfter array is the same index as
in the Picture array. So, if you set SpaceAfter(0) to 4, you define a spacing of 4 pixels
after the first button. The default setting is 0 pixels, but you can set it to any value you
like.

Data Type
Integer

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

ShowStatusMessage Property, ButtonBar Control
see also example

Description
Specifies when the message, set in the ButtonMessage property array is displayed in the
StatusBar.

Usage
[form!]ButtonBar1.ShowStatusMessage [= setting%]

Remarks
It is possible to make a connection between the StatusBar control and the ButtonBar
control, by filling in the StatusField and hWndStatusBar properties. After that you can
specify a message for each button or control you have defined, by filling in the
appropriate entry in the ButtonMessage property array or in the ControlMessage
property. The message will be displayed in the specified field of the StatusBar control
depending on the setting of the ShowStatusMessage property.
The ShowStatusMessage takes one of the following values to specify when the message
is displayed in the StatusBar:

Value Short name Description
0 NEVER (Default) Does not display the messages in the

StatusBar.
1 MOUSESELECT Displays a message in the StatusBar when the button

is selected and clear the message after the button is
released. Does not display ControlMessages since I still
havent figured out how to trap these without using a
Windows-hook.

2 MOUSEOVER Displays a message in the StatusBar when the mouse
is over a button or control on the ButtonBar. The
message is cleared if the mouse moves off the button
or control.

3 RIGHTMOUSE Displays a message in the StatusBar when the button
is selected with the right mouse-button. The message
is cleared when the right mouse-button is released.
Does not display control-messages.

4 WITHHINT Display the Button/ControlMessages along with the
hint-popup. The message is placed in the StatusBar
only if the ShowHint property is set to True.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes some buttons with messages on a
ButtonBar control. To use this example create a form with one ButtonBar and one
StatusBar control and paste the code into the Declarations section of your form.

ButtonMessage Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the text to be displayed in one of the text-fields of a StatusBar control if
the button is selected.

Usage
[form!]ButtonBar1.ButtonMessage(I) [= message$]

Remarks
It is possible to make a connection between the StatusBar control and the ButtonBar
control, by filling in the StatusField and hWndStatusBar properties.
After that you can specify a message for each button you have defined, by filling in the
appropriate entry in the ButtonMessage property array. The message will be displayed in
the specified field of the StatusBar control depending on the setting of the
ShowStatusMessage property.

Data Type
String

The example shows a Form_Load that initializes some buttons with messages on a
ButtonBar control. To use this example create a form with one ButtonBar and one
StatusBar control and paste the code into the Declarations section of your form.

ButtonGroup Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the group a button on the ButtonBar control is a member of.

Usage
[form!]ButtonBar1.ButtonGroup(I) [= setting%]

Remarks
You can group 2-state buttons in a group, by setting the ButtonGroup property of all the
buttons you want to group to the same number.
When buttons are selected into a group, they behave like toggles; when one of the
buttons in a group is depressed, all other buttons are raised. Once a button is depressed
it cannot be raised again by clicking on it a second time, unless you alter the
GroupAllowAllUp property for the group the button is a member of.
To remove a button from a group, set the ButtonGroup property of that button to -1.

Data Type
Integer

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control. To use this example create a form with one ButtonBar control and paste the code
into the Declarations section of your form.

LeftMargin Property, ButtonBar Control

Description
Sets or retrieves the left-margin for the ButtonBar control.

Usage
[form!]ButtonBar1.LeftMargin [= setting%]

Remarks
The LeftMargin property specifies how much room to leave before displaying the first
button
The left margin is always expressed in pixels, regardless of the ScaleMode of the
ButtonBar's parent.

Data Type
Integer

ButtonPicture Property, ButtonBar Control
see also example

Description
A one-dimensional array of pictures representing all of the picture cells in the bitmap
specified by the ButtonPictures property. This property is not available at design time and
is read-only at run time.

Usage
[form!]ButtonBar1.ButtonPicture(Index%)

Remarks

Use the MKBitmap program provided with this VBX to create a bitmap that contains all
the pictures needed to represent the different states of each button on the ButtonBar.
Use the ButtonPictures property to specfiy the created bitmap for use with the
ButtonBar.
Use the ButtonRows and ButtonColumns properties to divide the bitmap into a uniform
matrix of graphic cells.
Use this property to specify a picture for the Picture , PictureDown , PictureDisabled or
PictureDisabledDown property arrays.
The cells specified by ButtonPicture are indexed, beginning with 0, and increase from
left to right and top to bottom.
When reading this property, an error is generated when there is no picture or the Rows
or Cols property is set to 0.

Integer (Picture)

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control using the ButtonPictures property. To use this example create a form with one
ButtonBar control and paste the code into the Declarations section of your form.

Insert button
If you click this button, a new button is inserted before the currently selected button. If you
already defined 30 buttons, the last button is moved off the ButtonBar. All buttons,
including the currently selected button are moved one place down, to accomodate space
for the new button.

Delete button
If you click this button, the currently selected button is deleted. All buttons after this button
are moved one place up. If you already defined 30 buttons, the last button will become
available again.

Up button
This button (together with the down-button) allows you to exchange buttons. If you click
this button, the currently selected button is exchanged with the button right before it,
effectively moving it one place up.

Down button
This button (together with the up-button) allows you to exchange buttons. If you click this
button, the currently selected button is exchanged with the button after it, effectively
moving it one place down.

Cancel button
To ignore the changes you've made for the settings for the buttons on the ButtonBar
control, click the Cancel-button. The ButtonBar will remain exactly the same as it was
before you selected the ButtonProperties property.

Ok button
To confirm the settings for the buttons on the ButtonBar control, click the Ok-button.
All settings you've specified will be applied to the ButtonBar control. Now you can see
directly how your ButtonBar will look when the program is run.

Bitmap selection scroll-bar
The bitmap you've specified in the ButtonPictures property is broken into little bitmaps
according to the settings in the ButtonColumns and ButtonRows properties. You can select
one of the tiny bitmaps for use on a button on the ButtonBar by sliding the scroll-bar to the
left or to the right until you find the bitmap you need.
To use the selected bitmap for one of the states of the currently selected button, press the
Use-button.
You can also select one of the tiny bitmaps at run-time by requesting a bitmap from the
ButtonPicture (graphic cells) array.

StatusBar Field textbox
Use this property to set the field of the StatusBar in which the messages in the
ButtonMessage property array are to be displayed. Valid values range from 0 to 29
inclusive. You can also set this property at run-time by setting the StatusField property.

StatusBar selection combo-box
This combobox present a list of all StatusBar available on the current form for displaying
the messages in the ButtonMessage property array. To connect a StatusBar to the current
ButtonBar, select its name from the combobox list. To remove the connected between a
StatusBar and the ButtonBar, select <none> from the list. You can also set this property at
run-time bu setting the hWndStatusBar property.

Select button
Clicking this button will bring up the dialog where you can select a bitmap that has to be
used for representing the selected state of the currently selected button. This allows you to
use bitmaps that are not present in the large bitmap in the ButtonPictures property.

Use button
After you've selected the tiny bitmap you want to use, and the state of the button this
picture is for, clicking the Use-button will copy the picture to the selected position for the
cuurently selected button.

Picture selection radio buttons
After you've selected the tiny bitmap you want to use, select the state of the button this
picture is for by clicking on one of the radiobuttons. Click on the 'Use'-button to copy the
picture to the selected location.
To remove a button-picture for a button, double click on it.
You can also set the pictures for a button by setting the appropriate entries in the Picture ,
PictureDown , PictureDisabled or PictureDisabledDown property arrays at run-time.

ButtonHint
Allows you to set a hint that is displayed over the button when the mouse cursor rests on it.
You can also set this property by setting the appropriate entry in the ButtonHint property
array at run-time.

ButtonTag
Allows you to set a text specific for a button, for example to be able to identify the button
in code, even if you change the order of the buttons.
You can also set this property by setting the appropriate entry in the ButtonTag property
array at run-time.

ButtonMessage
Allows you to set a message that can be displayed in one of the text-fields of a StatusBar
control.
You can also set this property by setting the appropriate entry in the ButtonMessage
property array at run-time.

GroupAllowAllUp Checkbox
If this check-box is checked the group the currently selected button is part of, allows all
buttons in the up-position. If this check-box is unchecked at least one button of the group
must be down.
You can also set this property by specifying a value for the GroupAllowAllUp property at
run-time.

ButtonVisible Checkbox
If this check-box is checked the currently selected button is visible, otherwise the button is
invisible.
You can also set this property by specifying a value for the ButtonVisible property at run-
time.

ButtonEnabled Checkbox
If this check-box is checked the currently selected button is enabled, otherwise the button
is disabled.
You can also set this property by specifying a value for the ButtonEnabled property at run-
time.

ButtonGroup
The ButtonGroup text-box array allows you to make 2-state buttons part of a group. To
make buttons part of the same group assign the same group number to them. Legal
groupnumbers run from 0 to 29 inclusive.
You can also set this property by setting the appropriate entry in the ButtonGroup property
array at run-time.

Space After
The SpaceAfter text-box array allows you to define the spacing between the buttons on the
ButtonBar control. It specifies how much space (in pixels) to leave behind the currently
selected button before the next button is shown. So if you set the value to 4, you define a
spacing of 4 pixels after the current button. The default setting is 0 pixels, but you can set
it to any value you like.
You can also set this property by setting the appropriate entry in the SpaceAfter property
array at run-time.

ButtonType selection combo-box
Select the type of button for the currently selected button. Possible values are:

Value Description
Normal Button (Default) The button acts like a normal command-button.
2 State Button The button is a 2-state button. After the first click, the button

remains depressed. After the second click the button returns to it's
normal state.

You can also set this property by setting the appropriate entry in the ButtonType property
array at run-time.

ButtonState selection combo-box
Select the state for the current button if this button is defined as a 2-state button. Possible
values are:

Value Description
Up (Default) The button is in the up-position
Down The button is down.

You can also set this property by setting the appropriate entry in the ButtonState property
array at run-time.

Button Listbox
Choose the button you want to specify from this listbox. When you select a button from the
list, it's settings are displayed in the combo-boxes and text-boxes to the right and below
the listbox.

ButtonProperties Dialog, ButtonBar Control

Description
Allows you to set the properties for all button on the ButtonBar at design time, using a
dialog-window.

Usage
Double click on the three dots next to the property to display the Button-Properties
Dialog. The dialog looks like this. To get help on the way to use the dialog, click the
various parts of it for detailed information.

ButtonPictures Property, ButtonBar Control
see also example

Description
This property is the same as the standard Visual Basic Picture property except that it only
supports bitmap (.BMP) files.

Usage
[form!]ButtonBar1.ButtonPictures [= LoadPicture("FileName")]

Remarks
Use this property to specify a bitmap that contains all the different bitmaps needed for
the buttons on the ButtonBar. You can divide the source bitmap specified in the
ButtonPictures property into a uniform matrix of picture cells by using the ButtonRows
and ButtonColumns properties. Use the ButtonPicture property to specify individual
pictures for use with the Picture , PictureDown , PictureDisabled or PictureDisabledDown
property arrays.

Data Type
Integer (Picture)

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control using the ButtonPictures property. To use this example create a form with one
ButtonBar control and paste the code into the Declarations section of your form.

ButtonTag Property Array, ButtonBar Control
see also example

Description
Specifies a tag for a button of the ButtonBar control.

Usage
[form!]ButtonBar1.ButtonTag(I) = String$

Remarks
Each button on the ButtonBar can have a tag that identifies the button. Since the
ButtonTag property is not used internally in the ButtonBar control, you can use the
ButtonTag property to do anything you like, for example giving each button a unique
name. This way, you can identify a button easily in the ButtonClick event, without having
to rewrite code if you change the order of the buttons.

Data Type
String

The example shows a Form_Load that initializes some buttons on a ButtonBar control and
uses the ButtonTag property to identify the buttons in the Click event. To use this
example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

ButtonState Property Array, ButtonBar Control
see also example

Description
Specifies the state for a button of the ButtonBar control.

Usage
[form!]ButtonBar1.ButtonState(I) = State%

Remarks
Each 2-state button on the ButtonBar can have the state RAISED (0) or DEPRESSED (-1).
The ButtonState property array takes one of the following values to specify the state of a
text-field.

Value Short name Description
0 RAISED (Default) The button is raised.
1 DEPRESSED The button is depressed.
It is not possible to change the state of a normal button (ButtonType = 0) on the
ButtonBar.    Using the ButtonState property allows the programmer to reset a 2-state
button to it's up-state even if the GroupAllowAllUp property of the group is set to False.

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes some buttons on a ButtonBar control. To
use this example create a form with one ButtonBar control and paste the code into the
Declarations section of your form.

ButtonVisible Property Array, ButtonBar Control
see also

Description
Sets or retrieves the visibility for the the button with the same index.

Usage
[form!]ButtonBar1.ButtonVisible(I) [= setting%]

Remarks
The ButtonBar allows you to hide and show buttons at run-time. You can do this by
setting the appropriate entry in the ButtonVisible property array.
There are two ways the ButtonBar can respond if you change the visibility of a button,
depending on the setting of the IgnoreInvisibleButtons property. If this property is set to
True and you hide a button on the ButtonBar, the rest of the buttons will shift to the left.
If you make the button visible again, the rest of the buttons will shift back to the right. If
the IgnoreInvisibleButtons property is set to False, only the specified button will
disappear; other buttons are not affected. This way you effectively create a gap in the
ButtonBar.
The index in the ButtonVisible property array is the same index in the all the other
button-related property arrays (i.e. ButtonState, ButtonGroup, ButtonEnabled, Picture).

Data Type
Integer (Boolean)

IgnoreInvisibleButtons Property, ButtonBar Control
see also

Description
Sets or retrieves the way other buttons react to invisible buttons.

Usage
[form!]ButtonBar1.IgnoreInvisibleButtons [= setting%]

Remarks
The ButtonBar supports two different button-types. The ButtonType property array takes
one of the following values to specify the type of a button.

Value Description
False (Default) If you hide a button on the ButtonBar, the rest

of the buttons will shift to the left filling up the space
the invisible button left behind. If you make the button
visible again, the rest of the buttons will shift back to
the right.

True If you hide a button on the ButtonBar by setting its
ButtonVisible to False, only the specified button will
disappear; other buttons are not affected. This way you
effectively create a gap in the ButtonBar.

Data Type
Integer (Boolean)

ButtonType Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the button-type for the button with the same index.

Usage
[form!]ButtonBar1.ButtonType(I) [= ButtonType%]

Remarks
The ButtonBar supports two different button-types. The ButtonType property array takes
one of the following values to specify the type of a button.

Value Short name Description
0 BUTTON_NORMAL (Default) The button reacts like a normal command-

button.
1 BUTTON_2STATE The button is a 2-state button. After the first click, the

button remains depressed. After the second click the
button returns to it's normal state.    This behavior can
be different if the A 2-state button is member of a
group (by setting the ButtonGroup property). If the
button is part of a group, it is raised if another member
of the group is depressed.
If the GroupAllowAllUp property of the group the button
is a member of is set to False, the button remains
depressed if you click on it a second time.

The index in the ButtonType property array is the same index in all the other button-
related property arrays (i.e. ButtonState, ButtonGroup, ButtonEnabled, Picture).

Data Type
Integer (Enumerated)

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control. To use this example create a form with one ButtonBar control and paste the code
into the Declarations section of your form.

ButtonColumns, ButtonRows Properties, ButtonBar Control
see also example

Description
Sets or returns the total number of columns or rows in the picture specified in the
ButtonPictures property.

Usage
[form!]ButtonBar1.ButtonColumns [= cols%]
[form!]ButtonBar1.ButtonRows [= rows%]

Remarks
Use these properties to divide the source bitmap specified in the ButtonPictures property
into a uniform matrix of picture cells. Use the ButtonPicture property to specify individual
pictures for use with the Picture , PictureDown , PictureDisabled or PictureDisabledDown
property arrays.
The ButtonBar control must have at least one column and one row.
The height of each picture cell is determined by dividing the height of the source bitmap
by the number of specified rows. Leftover pixels at the bottom of the source bitmap
(caused by integer rounding) are clipped.
The width of each picture cell is determined by dividing the width of the source bitmap
by the number of specified columns. Leftover pixels at the right of the source bitmap
(caused by integer rounding) are clipped.

Data Type
Integer

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control using the ButtonPictures property. To use this example create a form with one
ButtonBar control and paste the code into the Declarations section of your form.

ButtonEnabled Property Array, ButtonBar Control
see also example

Description
Sets or retrieves the enabled-state for the button with the same index.

Usage
[form!]ButtonBar1.ButtonEnabled(I) [= setting%]

Remarks
The ButtonEnabled property settings are:

Setting Description
True (Default) Allows the button to respond to events.
False Prevents the object from responding to events.

This property allows buttons to be enabled or disabled at run time.    For example, you
can disable buttons that don't apply to the current state of the application. When a
button is disabled, the picture, specified by the Picture property, will be changed so that
it looks disabled (all black pixels will be transformed to dark-gray) if no picture for the
disabled state is specified.

Data Type
Integer (Boolean)

The example shows a Form_Load that initializes a couple of buttons on a ButtonBar
control. To use this example create a form with one ButtonBar control and paste the code
into the Declarations section of your form.

Events
The ButtonBar control supports the following events:
Click DragDrop DragOver

Methods
The ButtonBar control supports the following methods:
Drag Move Refresh ZOrder

Properties
All the properties that apply to the ButtonBar control are listed in the following table. All
properties that are marked with an asterisk (*) are only available at run-time.
Align ButtonColumns ButtonEnabled * ButtonGroup *
ButtonHint * ButtonMessage * ButtonPicture ButtonPictures
ButtonProperties ButtonRows ButtonState * ButtonTag *
ButtonType * ButtonVisible * ControlHint * ControlHwnd *
ControlMessage * Enabled FontBold FontItalic
FontName FontSize FontStrikethru FontUnderline
GroupAllowAllUp * Height HintBackColor HintDelay
HintOffsetX HintOffsetY HintPosition hWnd
hWndStatusBar * IgnoreInvisibleButtons Index Left
LeftMargin Name OutlineChildren Parent
Picture * PictureDown * PictureDisabled * PictureDisabledDown *
ShowDisabledHints ShowDisabledMessages ShowHints ShowStatusMessage

SpaceAfter * StatusField * Top Visible
Width
Note the ButtonEnabled, ButtonGroup, ButtonHint, ButtonMessage, ButtonPicture,
ButtonState, ButtonTag, ButtonType, ButtonVisible, ControlHint, ControlHwnd,
ControlMessage, GroupAllowAllUp, hWndStatusBar, Picture, PictureDown, PictureDisabled,
PictureDisabledDown, SpaceAfter and StatusField properties are only available at run-time.
These properties can also be set at design time using the ButtonProperties dialog-box.
Name is the default property for the ButtonBar control.

The ButtonBar Custom Control
Properties Methods Events

Description
The Microsoft Visual Basic programming system for Windows comes with a large set of
3D controls. Unfortunately, a 3D button-bar, as used in almost every MS-Windows
application is lacking. Therefore the ButtonBar Custom Control was designed. This control
allows you to create a very versatile button bar for all your applications.

File Name
TOOLBARS.VBX

Object Type
ButtonBar

Toolbox Icon

Remarks
The ButtonBar allows an application to display a button-bar at the top of a form. The
button-bar has 30 fully configurable buttons, which can be completely defined at design
time. To get the ButtonBar working, the only thing you have to do is specify a bitmap for
the up-position of each button. The ButtonBar control automatically creates the different
bitmaps for the down and the two disabled states (up and down) of the button. Like all
applications today, the ButtonBar supports tool-tips, a small window that pops up when
the user rests the mouse-cursor on a button or a control placed on the ButtonBar that
explains the function of the button or control (small hint). The ButtonBar calls these hints
Button/ControlHints. It is also possible to connect the button-bar to the status-bar and
specify (longer) messages for each button to be shown when that button is selected.
The ButtonBar also offers a PicClip like property 'ButtonPictures'. With this you can
specify a bitmap that contains all the small bitmaps for the buttons on the ButtonBar.
This avoids having to distribute all the small bitmaps that make up the ButtonBar since
the bitmap is saved within your application. A little application (written in Visual Basic)
that is distributed with the TOOLBARS.VBX allows easy creation and modification of such
a large bitmap.

Usage
To use the ButtonBar, perform the following steps:

1. Add the Toolbars custom control to your project. The StatusBar and the ButtonBar
icons will appear in the Visual Basic tool-palette.

2. Add a ButtonBar control to your form by double clicking on the icon in the
ToolBox..

3. Define the buttons for the ButtonBar using the ButtonProperties dialog or set the
Picture (and eventually the PictureDisabled) and ButtonType properties for the
number of buttons you want to display in the Form_Load event procedure of your
form.

4. Add code to respond to a Click on a certain button in the ButtonBar.   

Distribution Note    When you create and distribute applications that use the ButtonBar
control, you should install the file TOOLBARS.VBX in the customer's Microsoft Windows \
SYSTEM subdirectory.

